Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:01:36.609Z Has data issue: false hasContentIssue false

Determination of The Local Atomic Structure of LA2-x(SR,BA)xCUO4 Materials From Neutron Powder Diffraction Data

Published online by Cambridge University Press:  22 February 2011

S. J. L. Billinge
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
G. H. Kwei
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550.
Get access

Abstract

We describe the use of neutron powder diffraction for studying the local structure of high-temperature superconductors. This is accomplished by carrying out a pair distribution function (PDF) analysis. This approach does not presume a periodic structure and allows short range deviations from perfect crystalline order to be observed. Data from a sample of La2CuO4 collected on two different diffractometers are compared to determine the degree of reproducibility of the results. It is found that the data reproduce very well; however, a model-PDF, fit to the data assuming the average crystal structure in the low-temperature-orthorhombic (LTO) phase, differs from the data in a number of significant ways. This is related to earlier observations that the local structure of the La1.875Ba0.125CuO4 compound differs from the average crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Goodenough, J. B. and Manthiram, A., J. Solid State Chem. 88, 115 (1990).Google Scholar
2 Lepage, Y. et al. , Phys. Rev. B 40, 6810 (1989); E. A. Hewat, J. J. Caponi and M. Marezio, Physica C 157, 502 (1989).Google Scholar
3 Hammel, P. C. et al. , Phys. Rev. Lett. 71, 440 (1993).Google Scholar
4 Axe, J. D. et al. , Phys. Rev. Lett. 62, 2751 (1989); M. K. Crawford et al, Phys. Rev. B 44, 7749 (1991); B. Büchner et al., Phys. Rev. Lett. 73, 1841 (1994).Google Scholar
5 Stern, E. A., et al. , Physica C 209, 331 (1993).Google Scholar
6 Adelmann, P. et al. , Phys. Rev. B 46, 3619 (1992).Google Scholar
7 Egami, T., Mater. Trans. 31, 163 (1990).Google Scholar
8 Billinge, S. J. L. and Egami, T., Phys. Rev. B 47, 14386 (1993).Google Scholar
9 Billinge, S. J. L., Kwei, G. H. and Thompson, J. D., in Los Alamos Symposium: Strongly Correlated Electronic Materials edited by Bedell, K. et al. (Addison Wesley, New York, 1994).Google Scholar
10 Billinge, S. J. L., Kwei, G. H. and Takagi, H., Phys. Rev. Lett. 72, 2282 (1994).Google Scholar
11 Cox, D. E. et al. , Mat. Res. Symp. Proc. 156, 141 (1989).Google Scholar
12 Thurston, T. R. et al. , Phys. Rev. B 39, 4327 (1989).Google Scholar
13 Chen, C. H. et al. , Physica C 206, 183 (1993); Y. Zhu et al., Phys. Rev. Lett., 73, 3026 (1994).Google Scholar