Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:05:55.817Z Has data issue: false hasContentIssue false

Designer Carbons Templated by Pillared Clays: Lithium Secondary Battery Anodes

Published online by Cambridge University Press:  10 February 2011

G. Sandí
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
K. A. Carrado
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
R. E. Winans
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
J. R. Brenner
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
G. W. Zajac
Affiliation:
Amoco Research Center, Naperville, IL 60566
Get access

Abstract

This work describes the designed synthesis and physical characterization of carbons containing predictable microporosity. The approach is to pyrolyze aromatic hydrocarbons such as pyrene within a pillared clay. The pillared clay serves two functions. It performs as the inorganic template around which the designer carbon can be formed, and it acts as an acid catalyst to promote condensation of the aromatics similar to the Schöll reaction. These precursors then undergo thermal polymerization and carbonization at 700 °C. Removal of the pillared clay template is accomplished by standard acid demineralization techniques, leaving behind carbons with 15 to 50 Å holes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dahn, J. R., Sligh, A. K., Shi, H., Way, B. W., Weydanz, W. J., Reimers, J. N., Zhong, Q., and von Sacken, U., in Lithium Batteries-New Materials, Developments and Perspectives, Pistoia, G., Editor, p. 1, Elsevier, Amsterdam (1994).Google Scholar
2. Aurbach, D., Weissman, I., Zaban, A., and Chusid, O., Electrochim. Acta, 39, 5 (1994).Google Scholar
3. Dahn, J. R., Sleigh, A. K., Shi, H., Reimers, J. N., Zhong, Q., and Way, B. M., Electrochim. Acta, 38, 1179 (1993).Google Scholar
4. Tatsumi, K., Iwashita, N., Sakaebe, H., Shioyama, H., and Higuchi, S., J. Electrochem. Soc., 143, 716 (1995).Google Scholar
5. Wilson, A. M., and Dahn, J. R., J. Electrochem. Soc., 142, 326 (1995).Google Scholar
6. Kyotani, T., Sonobe, N., and Tomita, A., Nature, 331, 331 (1988).Google Scholar
7. Winans, R. E. and Carrado, K. A., J. Power Sources, 54, 11 (1995).Google Scholar
8. In aqueous solution the diameter of hydrated Al13 pillar is about 19.6 Å. The crystalline diameter of the Al3 pillar corresponds to 10.8 Å. Calcination does not alter this value significantly. Johanson, G., Acta Chem. Scand., 14, 769 (1960).Google Scholar
9. Bergaoui, L., Lambert, J. F., Vicente-Rodríguez, M. A., Michot, L. J., and Villiéras, F., Langmuir, 11, 2849 (1995).Google Scholar
10. Sandí, G., Winans, R. E., and Carrado, K. A., J. Electrochem. Soc., 143, L95 (1996).Google Scholar
11. Fisher, D. A., Colbert, J., and Gland, J. L., Rev. Sci. Instrum., 60, 1596 (1989).Google Scholar
12. Fisher, D. A., Dobler, U., Arvanitis, D., Wenzel, L., Baberschke, K., and Stohr, J., Surf. Sci., 177, 114 (1986).Google Scholar
13. Everett, D. H., in Characterization of Porous Solids Gregg, S. J., Sing, K. S. W., Stoeckli, H. F., Editors, p. 229, Soc. Chem. Ind. London (1979).Google Scholar
14. Kinoshita, K., Carbon, Electrochemical and Physicochemical Properties, p. 57, John Wiley & Sons, New York (1988).Google Scholar
15. Gregg, S. J., and Sing, K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, 1967, p. 121.Google Scholar
16. Rosenberg, R. A., Love, P. J., and Rehn, V., Phys. Rev. B., 33, 4034 (1986).Google Scholar