Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:57:10.570Z Has data issue: false hasContentIssue false

Design of Nanostructured Selective Surfaces for Solar to Thermal Energy Conversion

Published online by Cambridge University Press:  19 August 2014

Daniel L. Gau
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Ricardo E. Marotti
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Federico Davoine
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Lucía I. Amy
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Enrique A. Dalchiele
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Rocío Romero
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
José R. Ramos-Barrado
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
Dietmar Leinen
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
Francisco Martín
Affiliation:
Lab. de Materiales y Superficies (Unidad Asociada al CSIC), Dptos. de Física Aplicada & Ingeniería Química, Universidad de Málaga, Campus de Teatinos s/n, E29071 Málaga, Spain.
Santiago Botasini
Affiliation:
Lab. de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay.
Eduardo Méndez
Affiliation:
Lab. de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay.
Gonzalo Abal
Affiliation:
Instituto de Física & CINQUIFIMA, Facultad de Ingeniería, Universidad de la República, Julio H. Reissig 565, CC 30, CP 11000, Montevideo, Uruguay.
Get access

Abstract

The solar absorptance αs of nanostructured selective surface (NSS) for solar thermal energy is improved. The NSS are prepared by AC electrochemical impregnation of metal inclusions (MI) into porous anodized aluminum oxide (AAO). The dependence of the NSS performance with composition depth profile and MI is studied by numeric simulations based in a gradient index model and effective medium theory. The results are compared with experimental NSS prepared varying three control parameters and MI (Ni, Cu, Ag). The αs is improved to > 85% (keeping thermal emittance εT relatively low) for Ni MI, mainly by increasing MI content. Increasing AAO thickness or MI molecular weight (for a given experimental composition profile) also improves the performance. For Ag the αs was further improved to 90%.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oelhafen, P. and Schüler, A., Solar Energy 79, 110 (2005).CrossRefGoogle Scholar
Kumar, S. K., Murugesan, S., and Suresh, S., Mater. Chem. Phys. 143, 1209 (2014).CrossRefGoogle Scholar
Li, Z., Zhao, J., and Ren, L., Solar Energy Mater. Solar Cells 105, 90 (2012).CrossRefGoogle Scholar
Xiao, X., Xu, G., Xiong, B., Chen, D., and Miao, L., J. Nanopart. Res. 14, 746 (2012).CrossRefGoogle Scholar
Boström, T., Wäckelgård, E., and Westin, G., Solar Energy 74, 497 (2003).CrossRefGoogle Scholar
Andersson, A., Hunderi, O., and Granqvist, C. G., J. Appl. Phys. 51, 754 (1980).CrossRefGoogle Scholar
Süzer, S., Kadirgan, F., Söhmen, H. M., Wetherilt, A. J., and Türe, E, Solar Energy Mater. Solar Cells 52, 55 (1998).CrossRefGoogle Scholar
Galione, P. A., Baroni, A. L., Ramos-Barrado, J. R., Leinen, D., Martín, F., Marotti, R. E., and Dalchiele, E. A., Surf. Coat. Tech. 204, 2197 (2010).CrossRefGoogle Scholar
Tulchinsky, D., Uvarov, V., Popov, I., Mandler, D., and Magdassi, S., Solar Energy Mater. Solar Cells 120, 23 (2014).CrossRefGoogle Scholar
Davoine, F., Galione, P. A., Ramos-Barrado, J. R., Leinen, D., Martín, F., Dalchiele, E. A., and Marotti, R. E., Solar Energy 91, 316 (2013).CrossRefGoogle Scholar
Montero-Moreno, J. M., Sarret, M., and Müller, C., Surf. Coat. Tech. 201, 6352 (2007).CrossRefGoogle Scholar
Salmi, J. and Bonino, J. P., Bes, R. S., J. Mater. Sci. 35, 1347 (2000).CrossRefGoogle Scholar
Lau, B.-C., Liu, C.-Y., Lin, H.-Y., Huang, C.-H., Chui, H.-C., and Tzeng, Y., Electrochem. Solid-State Lett. 14, E15 (2011).CrossRefGoogle Scholar
Stenzel, O., The Physics of Thin Film Optical Spectra – An Introduction (Springer-Verlag, Berlin, 2005) p. 125 and p. 111.Google Scholar
Aspnes, D. E., Am. J. Phys. 50, 704 (1982).CrossRefGoogle Scholar
Tropf, W. J., Thomas, M. E., and Harris, T. J., Properties of Crystals and Glasses , in Handbook of Optics, vol. 2 edited by Bass, M., Van Stryland, E. W., Williams, D. R., Wolfe, W. L. (Mc Graw Hill Inc, New York, 1996) Chap. 33.Google Scholar
Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
Johnson, P. B. and Christy, R. W., Phys. Rev. B, 9, 5056 (1974).CrossRefGoogle Scholar
Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L., and Querry, M. R., Appl. Opt. 24, 4493 (1985).CrossRefGoogle Scholar
Galca, A. C., S Kooij, E., Wormeester, H., Salm, C., Leca, V., Rector, J. H., and Poelsema, B., J. Appl. Phys. 94, 4296 (2003).CrossRefGoogle Scholar
Zong, R. L., Zhou, J., Li, Q., Du, B., Li, B., Fu, M., Qi, X. W., Li, L. T., and Buddhudu, S., J. Phys. Chem. B 108, 16713 (2004).CrossRefGoogle Scholar
Köhl, M., Heck, M., Brunold, S., Frei, U., Carlsson, B., and Möller, K., Solar Energy Mater. Solar Cells 84, 275 (2004).CrossRefGoogle Scholar