Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:45:46.400Z Has data issue: false hasContentIssue false

Dependence of the Raman Spectrum of Silicon Nanowires on the Wire Environment

Published online by Cambridge University Press:  01 February 2011

Harald M. Scheel
Affiliation:
harald.scheel@physik.tu-berlin.de, Technical University Berln, Ins. of Solid State Pysics, Hardenbergstrasse 36, Berlin, 10623, Germany
S. Reich
Affiliation:
sreich@mit.edu, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139-4307, United States
C. Thomsen
Affiliation:
thomsen@physik.tu-berlin.de, Technische Universität Berlin, Inst. für Festkörperphysik, Hardenbergstrasse 36, Berlin, 10623, Germany
Get access

Abstract

The large surface to volume ratio in nanometer sized wire structures cause a strong dependence of the optical Raman mode on the thermal conductivity of a surrounding medium. On the basis of optical measurements on silicon nanowires as a function of excitation laser power we explain the very large red-shifted Raman spectra observed already for moderate laser powers. This thermal effect is enhanced by a silicon oxide sheath, rendering a reduced thermal contact of the wires to the substrate. The intrinsic redshift due to spatial confinement in silicon nanowires is found to be smaller than 2 cm−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reich, S., Thomsen, C., and Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, New York, 2004).Google Scholar
2. Piscanec, S. et al., Phys. Rev. B, 68, 241312Ȑ (2003).Google Scholar
3. Gupta, R. et al., Nano Lett., 3, 627 (2003).Google Scholar
4. Zhang, R. Q., Lifshitz, Y., and Lee, S.- T., Adv. Mater., 15, 635 (2003).Google Scholar
5. Colli, A. et al., AIP Conf. Proc., 723, 445 (2004).Google Scholar
6. Hofmann, S. et al., J. Appl. Phys., 94, 6005 (2003).Google Scholar
7. Thomsen, C. and Bustarret, Etienne, J. of Non- Cryst. Solids, 141, 265 (1992).Google Scholar
8. Smith, J. E., Brodsky, M. H., Crowder, B. L., and Nathan, M. I., Phys. Rev. Lett., 26,642 (1971).Google Scholar
9. Adu, K. W., Gutierrez, H. R., Kim, U. J., and Eklund, P. C., Phys. Rev. B, 73, 155333(2006).Google Scholar
10. Cardona, M., Light Scattering in Solids II (Springer, Berlin, 1982).Google Scholar
11. Reich, S. et al., Phys. Rev. B, 71, 205201 (2005).Google Scholar
12. Scheel, H. et al., Appl. Phys. Lett., 88, 233114 (2006).Google Scholar
13. Lysenko, V. et al., Microelectr. J., 30, 1141 (1999).Google Scholar
14. Balkanski, M. et al., Phys. Rev. B, 28, 1928 (1983).Google Scholar
15. Gray, D. E., American Institute of Physics Handbook (Mc Graw-Hill Book Company,New York, 1972).Google Scholar
16. Richter, H., Wang, Z. P., and Ley, L., Solid State Commun., 39, 625 (1981).Google Scholar
17. Campbell, I. H., and Fauchet, P. M., Solid State Commun., 58, 739 (1986).10.1016/0038-1098(86)90513-2Google Scholar
18. Calen, H. B., Thermodynamics (Wiley, New York, 1960)Google Scholar