Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:55:51.476Z Has data issue: false hasContentIssue false

The dependence of the crystalline volume fraction on the crystallite size for hydrogenated nanocrystalline silicon based solar cells

Published online by Cambridge University Press:  10 May 2013

K. J. Schmidt
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, BC, Canada.
Y. Lin
Affiliation:
Department of Materials Engineering, The University of British Columbia, Vancouver, BC, Canada.
M. Beaudoin
Affiliation:
Advanced Materials and Process Engineering Laboratory, The University of British Columbia, Vancouver, BC, Canada.
G. Xia
Affiliation:
Department of Materials Engineering, The University of British Columbia, Vancouver, BC, Canada.
S. K. O'Leary
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, BC, Canada.
G. Yue
Affiliation:
United Solar Ovonic LLC, Troy, MI, United States.
B. Yan
Affiliation:
United Solar Ovonic LLC, Troy, MI, United States.
Get access

Abstract

We have performed an analysis on three hydrogenated nanocrystalline silicon (nc-Si:H) based solar cells. In order to determine the impact that impurities play in shaping the material properties, the XRD and Raman spectra corresponding to all three samples were measured. The XRD results, which displayed a number of crystalline silicon-based peaks, were used in order to approximate the mean crystallite sizes through Scherrer's equation. Through a peak decomposition process, the Raman results were used to estimate the corresponding crystalline volume fraction. It was noted that small crystallite sizes appear to favor larger crystalline volume fractions. This dependence seems to be related to the oxygen impurity concentration level within the intrinsic nc-Si:H layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yan, B., Yue, G., Sivec, L., Jiang, C.-S., Yan, Y., Alberi, K., Yang, J., and Guha, S., in 35th IEEE Photovoltaic Specialists Conference, PVSC 2010, 3755 (2010).CrossRefGoogle Scholar
Yue, G., Yan, B., Sivec, L., Zhou, Y., Yang, J., and Guha, S., Sol. Energy Mater. Sol. Cells 104, 109 (2012).CrossRefGoogle Scholar
Kroll, U., Meier, J., Torres, P., Pohl, J., and Shah, A., J. Non-Cryst. Solids 227-230, 68 (1998).CrossRefGoogle Scholar
Shah, A. V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Graf, U., Sol. Energy Mater. Sol. Cells 78, 469 (2003).CrossRefGoogle Scholar
Yue, G., Yan, B., Ganguly, G., Yang, J., Guha, S., and Teplin, C. W., Appl. Phys. Lett. 88, 263507 (2006).CrossRefGoogle Scholar
Yue, G., Sivec, L., Yan, B., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 1153, A10–05 (2009).CrossRefGoogle Scholar
Cullity, B. D. and Stock, S. R., Elements of x-ray diffraction (Prentice-Hall, Upper Saddle River, 2001).Google Scholar
Yue, G., Lorentzen, J. D., Lin, J., Han, D., and Wang, Q., Appl. Phys. Lett. 75, 492 (1999).CrossRefGoogle Scholar
Vallat-Sauvain, E., Kroll, U., Meier, J., Shah, A., and Pohl, J., J. Appl. Phys. 87, 3137 (2000).CrossRefGoogle Scholar
Tay, L.-L., Lockwood, D. J., Baribeau, J.-M., Noël, M., Zwinkels, J. C., Orapunt, F., and O'Leary, S. K., Appl. Phys. Lett. 88, 121920 (2006).CrossRefGoogle Scholar
Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).CrossRefGoogle Scholar
Bustarret, E., Hachicha, M. A., and Brunel, M., Appl. Phys. Lett. 52, 1675 (1988).CrossRefGoogle Scholar
Han, D., Lorentzen, J. D., Weinberg-Wolf, J., McNeil, L. E., and Wang, Q., J. Appl. Phys. 94, 2930 (2003).CrossRefGoogle Scholar
Funde, A. M., Bakr, N. A., Kamble, D. K., Hawaldar, R. R., Amalnerkar, D. P., and Jadkar, S. R., Sol. Energy Mater. Sol. Cells 92, 1217 (2008).CrossRefGoogle Scholar