Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:06:11.776Z Has data issue: false hasContentIssue false

Density Functional Study of Benzoic Acid Derivatives Modified SnO2 (110) Surface

Published online by Cambridge University Press:  14 January 2014

Tegshjargal Khishigjargal*
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Kazuyoshi Ueda
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Get access

Abstract

Tin oxide is one of the popular metal oxide semiconductor used in solar cells, sensors, and catalysts. The surface modification by organic self assembled monolayer is one of the promising techniques to tune and to control the surface work function. In our study, we investigated the work function change of the SnO2 (110) surface which was modified with various benzoic acids derivatives using density functional theory (DFT). All calculations were carried out on Quantum Espresso program. Electron correlation and exchange parts were treated by local density (LDA), generalized gradient approximation (GGA) with Hubbard U term. To improve band structure calculation we used LDA+U method. The results of the calculation with LDA method indicated that the work functions of the pure and modified surface of SnO2 (110) with -C6H4-COOH molecule were calculated to be 7.40 eV and 6.18 eV, respectively. As the experimental value of work function of SnO2 (110) surface is about 7.74 eV, the results of the DFT calculation for pure SnO2 (110) surface modification by benzoic acid derivatives are in good agreement with the experimental.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Munnix, S. and Schmeits, M., Phys. Rev. B 27, 7624 (1983).CrossRefGoogle Scholar
Manassidis, I., Goniakowski, J., Kantorovich, L.N., Gillan, M.J., Surf. Sci. 339, 258 (1995).CrossRefGoogle Scholar
Mäki-Jaskari, M.A., Rantala, T.T., Phys. Rev. B 65, 245428 (2002).10.1103/PhysRevB.65.245428CrossRefGoogle Scholar
Rantala, T.T., Rantala, T.S., Lantto, V., Surf. Sci. 420, 103 (1999).CrossRefGoogle Scholar
Oviedo, J., Gillan, M.J., Surf. Sci. 463, 93 (2000).CrossRefGoogle Scholar
Ramamoorthy, M., Vanderbilt, D., King-Smith, R.D., Phys. Rev. B 49, 16721 (1994).CrossRefGoogle Scholar
Bates, S.P., Gillan, M.J., Kresse, G., J. Phys. Chem. B 102, 2017 (1998)CrossRefGoogle Scholar
Calatayud, M., Andrés, J., and Beltrán, A., Surf. Sci. 430, 213 (1999).CrossRefGoogle Scholar
Yamaguchi, Y., Tabata, K., Yashima, T., J. Mol. Str: THEOCHEM 714, 221 (2005).CrossRefGoogle Scholar
Batzil, M. and Diebold, U., Prog. Surf. Sci. 79, 47 (2005).10.1016/j.progsurf.2005.09.002CrossRefGoogle Scholar
Henrich, V.E., Cox, P.A., The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, (1994).Google Scholar
Viitala, M., Cramariuc, O., Rantala, T. T., and Golovanov, V., Surf. Sci. 602, 3038 (2008).CrossRefGoogle Scholar
Wen, Z., Tian-mo, L., and Xiao-fei, L., Physica B 405, 3458 (2010).CrossRefGoogle Scholar
Melle-Franco, M. and Pacchioni, G., Surf. Sci. 461, 54 (2000).CrossRefGoogle Scholar
Duan, Y., Phys. Rev. B 77, 045332 (2008).CrossRefGoogle Scholar
Fujihara, M., Ohishi, N., and Osa, T., Nature 268, 226.CrossRefGoogle Scholar
Ganzorig, C. and Fujihara, M., “Chemically Modified Oxide Electrodes. Encyclopedia of Electrochemistry,” (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).CrossRefGoogle Scholar
Ganzorig, Ch., Kwak, K.-J., Yagi, K., and Fujihira, M., Appl. Phys. Lett. 79, 272 (2001).CrossRefGoogle Scholar
Carrara, M., Nüesch, F. and Zuppiroli, L., Synth. Met. 121, 1633 (2001).CrossRefGoogle Scholar
Nüesch, F., Rotzinger, F., Si-Ahmed, L. and Zuppiroli, L., Chem. Phys. Lett. 288, 861 (1998).CrossRefGoogle Scholar
Appleyard, S. F. J., Day, S. R., Pickford, R. D. and Willis, M. R., J. Mater. Chem. 10, 169 (2000).10.1039/a903708jCrossRefGoogle Scholar
Khishigjargal, T., Javkhlantugs, N., Ganzorig, C., Kurihara, Y., Sakomura, M., Ueda, K., World Journal of Nano Science and Engineering 3, 5256 (2013).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Blochl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J.P. and Zunger, A.. Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
Anisimov, V. I., Zaanen, J., and Andersen, O.K., Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyżyk, M.T. and Sawatzky, G.A., Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J., Phys. Rev. B. 52, R5467 (1994).CrossRefGoogle Scholar
Cococcioni, M. and de Gironcoli, S., Phys. Rev. B 71, 035105 (2005).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Gironcoli, Stefano de, Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys.: Conden. Matt. 21, 395502 (2009).Google Scholar
Bengtsson, L., Phys. Rev. B 59, 12301 (1999).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Godin, T.J. and LaFemina, J.P., Phys. Rev. B 47, 6518 (1993)..CrossRefGoogle Scholar
Goniakowski, J., Holender, J. M., Kantorovich, L. N., and Gillan, M. J., Phys. Rev. B 53, 957 (1996).CrossRefGoogle Scholar