Published online by Cambridge University Press: 01 February 2011
In recent years great advances have been made in the synthesis of organic-inorganic hybrid materials, whether they are oligomeric, multipodal, polymeric or dendritic in structure. Of particular interest are liquid-crystalline systems, as the control of the soft self-assembly behaviour of these systems allows for the addressing of the macroscopic properties of these materials.
The investigations of silsesquioxane and siloxane cores decorated with suitable organic groups of linear and branched structures leading to liquid-crystalline phase behaviour is presented. The structural and chemical features which govern the phase behaviour will be discussed. Important features are the size, geometry, structure and flexibility of the inorganic core, the flexibility, branching and length of the spacer linking inorganic cores and the organic groups, which promote liquid-crystalline phase behaviour. The effects of a variety of mesogenic structures on the liquid-crystalline phase behaviour and stability range will be discussed.