Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:47:13.956Z Has data issue: false hasContentIssue false

Deformation of Polymer Films by Bending Forces

Published online by Cambridge University Press:  15 February 2011

D.W. Heermann
Affiliation:
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Deutschland und Interdisziplinäres Zentrum für wissenschaftliches Rechnen der Universität Heidelbergheermann@tphys.uni-heidelberg.de, URL: http://wwwcp.tphys.uni-heidelberg.de/
A. Linke
Affiliation:
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Deutschland und Interdisziplinäres Zentrum für wissenschaftliches Rechnen der Universität Heidelbergheermann@tphys.uni-heidelberg.de, URL: http://wwwcp.tphys.uni-heidelberg.de/
G. Pätzold
Affiliation:
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Deutschland und Interdisziplinäres Zentrum für wissenschaftliches Rechnen der Universität Heidelbergheermann@tphys.uni-heidelberg.de, URL: http://wwwcp.tphys.uni-heidelberg.de/
T. Hapke
Affiliation:
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Deutschland und Interdisziplinäres Zentrum für wissenschaftliches Rechnen der Universität Heidelbergheermann@tphys.uni-heidelberg.de, URL: http://wwwcp.tphys.uni-heidelberg.de/
Get access

Abstract

We study the deformation of nano-scale polymer films which are subject to external bending forces by means of computer simulation. The polymer is represented by a generalized bead-spring-model, intended to reproduce characteristic features of n-alkanes. The film is loaded by the action of a prismatic blade which is pressed into the polymer bulk from above and a pair of columns which support the film from below. The interaction between blade and support columns and the polymer is modeled by the repulsive part of a Lennard-Jones potential. For different system sizes as well as for different chain lengths, this nano-scale experiment is simulated by molecular dynamics methods. Our results allow us to give a characterization of deformed states for such films. We resolve the kinetic and the dynamic stage of the deformation process in time and access the length scale between discrete particle and continuum mechanics behavior. For the chain lengths considered here, we find that the deformation process is dominated by shear.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hapke, T., Simulation mikromechanischer Eigenschaften von amorphen makromolekularen Gläsern am Beispiel von Polyethylen, Diplomarbeit am Institut für Theoretische Physik der Universität Heidelberg, 1995.Google Scholar
[2] Gennes, P.-G. de, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979), p. 221.Google Scholar
[3] Pätzold, G., Hapke, T., Linke, A., and Heermann, D.W., Thin Solid Films (to be published); Surface Science (to be published); Computer studies on free and confined amorphous polymer films, contribution FF1.4 to the MRS 1996 fall meeting.Google Scholar