Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:20:36.776Z Has data issue: false hasContentIssue false

Defects in Copper Indium Aluminum Diselenide Films and their Impact on Photovoltaic Device Performance

Published online by Cambridge University Press:  01 February 2011

Jennifer T. Heath
Affiliation:
Department of Physics, Linfield College, McMinnville, OR 97128, U.S.A.
J. David Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
William N. Shafarman
Affiliation:
Institute of Energy Conversion, University of Delaware, Newark, DE 19716, U.S.A.
Get access

Abstract

The electronic properties of polycrystalline CuIn1-xAlxSe2 (CIAS) films, which are incorporated as the absorber layer in photovoltaic devices, have been studied to better understand limitations on device performance. These studies have shown that compared to lower Al content films and to CuIn1-yGaySe2films, films with x ≥ 0.29 are relatively intrinsic, spatially nonuniform, and have broader bandtails characterized by much higher Urbach energies. This indicates that the CIAS films with x ≥ 0.29 are significantly more disordered than lower Al content CIAS or corresponding CIGS films, which likely negatively impacts the resulting photovoltaic device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Prog. Photovoltaics 7, 311 (1999).Google Scholar
2. Marsillac, S., Paulson, P. D., Haimbodi, M. W., Birkmire, R. W., and Shafarman, W. N., Appl. Phys. Lett. 81, 1350 (2002).Google Scholar
3. Shafarman, W. N., Marsillac, S., Paulson, P. D., Haimbodi, M. W., Minemoto, T., and Birkmire, R. W., in Proceedings of the 29th IEEE PVSC, 519 (2002).Google Scholar
4. Shafarman, W. N., Klenk, R., and McCandless, B. E., J. Appl. Phys. 79, 7324 (1996).Google Scholar
5. Cohen, J. D., Unold, T., et al., J. Non-Cryst. Solids 141, 142 (1992).Google Scholar
6. Heath, J. T., Cohen, J. D., Shafarman, W. N., Liao, D. X., and Rockett, A. A., Appl. Phys. Lett. 80, 4540 (2002).Google Scholar
7. Wasim, S. M., Rincón, C., Marín, G., Bocaranda, P., Hernández, E., Bonalde, I., and Medina, E., Phys. Rev. B 64, 195101 (2001).Google Scholar
8. Tiedje, T., Appl. Phys. Lett. 40, 627 (1982).Google Scholar
9. Losee, D. L., J. Appl. Phys. 46, 2204 (1975).Google Scholar
10. Walter, T., Herberholz, R., Müller, C., Schock, H. W., J. Appl. Phys 80, 4411 (1996).Google Scholar
11. Michelson, C. E., Gelatos, A. V., Cohen, J. D., Appl. Phys. Lett.. 47, 412 (1985).Google Scholar
12. Heath, J. T., Cohen, J. D., and Shafarman, W. N., Thin Solid Films, in press.Google Scholar
13. Cohen, J. D., Heath, J. T., and Shafarman, W. N., this proceedings, B9.1.Google Scholar