No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
In this paper we argue that amorphous silicon can be treated as a relaxed continuous random network. The optical and electronic properties are controlled by localized gap states which arise from characteristic features of a disordered tetrahedrally-bonded covalent network. Experimental results are reviewed which indicate that the dominant (perhaps only) electrically-active defect in hydrogenated amorphous silicon is the topologically distinct, silicon dangling bond. Finally, we suggest that the same, disorder-related characteristics might also typify the electronic properties of some macroscopic crystalline silicon defects.