Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T13:44:26.391Z Has data issue: false hasContentIssue false

Defect-Induced Shifts in the Elastic Constants of Silicon

Published online by Cambridge University Press:  11 February 2011

Clark L. Allred
Affiliation:
The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02139–3563, U.S.A. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307, U.S.A. Air Force Institute of Technology, 2950 P Street, Wright-Patterson AFB, OH 45433–7765, U.S.A.
Jeffrey T. Borenstein
Affiliation:
The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02139–3563, U.S.A.
Marc S. Weinberg
Affiliation:
The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02139–3563, U.S.A.
Xianglong Yuan
Affiliation:
The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02139–3563, U.S.A.
Martin Z. Bazant
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307, U.S.A.
Linn W. Hobbs
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307, U.S.A.
Get access

Abstract

As MEMS devices become ever more sensitive, even slight shifts in materials properties can be detrimental to device performance. Radiation-induced defects can change both the dimensions and mechanical properties of MEMS materials, which will be of concern to designers of MEMS for applications involving radiation exposure, such as those in a reactor environment or in space. We have performed atomistic simulations of the effect that defects and amorphous regions, such as could be produced by radiation damage, have on the elastic constants of silicon. We have then applied the results of the elastic constant shift calculations to a hypothetical MEMS device, and calculated the difference that would be generated by this effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ziegler, J. F., SRIM-2003 computer code (private communication).Google Scholar
2 McLane, V., Dunford, C. L., Rose, P. F., Neutron Cross Sections, Vol 2, Neutron Cross Section Curves, National Nuclear Data Center, Brookhaven National Laboratory, Academic Press, Inc., 1981.Google Scholar
3 Lehmann, Chr., Interaction of Radiation with Solids and Elementary Defect Production, North-Holland, 1977, p. 88.Google Scholar
4 Tatsumi, Y. and Ohsaki, H. in Properties of Silicon, EMIS Datareviews Series No. 4, IMSPEC, The Institution of Electrical Engineers, London, 1988, p. 3.Google Scholar
5 Wang, S. X., Wang, L. M., and Ewing, R. C., Phys Rev B 63, 024105 (2000).Google Scholar
6 Nordlund, K., Ghaly, M., Averback, R. S., Caturla, M., Diaz de la Rubia, T., and Tarus, J., Phys Rev B 57, 7556 (1998).Google Scholar
7 Nordlund, K. and Averback, R. S., Phys. Rev. B 56, 2421 (1997).Google Scholar
8 Allred, C. L., Yuan, X., Bazant, M. Z., and Hobbs, L. W. (submitted for publication).Google Scholar
9 Bazant, M. Z. and Kaxiras, E., Phys. Rev. Lett. 77, 4370 (1996).Google Scholar
10 Bazant, M. Z., Kaxiras, E., and Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
11 Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and Yip, S., Phys. Rev. B 58, 2539 (1998).Google Scholar
12 Forester, T. R. and Smith, W., The DL_POLY_2 Reference Manual (CCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England, 2001), http://www.dl.ac.uk/TCSC/Software/DL_POLY/.Google Scholar
13 Zhang, X., Comins, J. D., Every, A. G., Stoddart, P. R., Pang, W., and Derry, T. E., Phys. Rev. B 58, 13677 (1998).Google Scholar
14 Szabadi, M., Hess, P., Kellock, A. J., Coufal, H., and Baglin, J. E. E., Phys. Rev. B 58, 8941 (1998).Google Scholar
15 Bhadra, R., Pearson, J., Okamoto, P., Rehn, L., and Grimsditch, M., Phys. Rev. B 38, 12656 (1988).Google Scholar
16 Ashby, M. G. and Jones, D. R. H., Engineering Materials 1: An Introduction to their Properties & Applications (Butterworth-Heinmann, Oxford, 1996).Google Scholar
17 Caturla, M.-J., Diaz de la Rubia, T., Marques, L. A., and Gilmer, G. H., Phys. Rev. B 54, 16683 (1996).Google Scholar
18 Moyer, N. E. and Buschert, R. C., in Radiation Effects in Semiconductors, edited by Vook, F. L., Plenum, NY 1968, pp. 444451.Google Scholar
19 Hobbs, L. W. (private communication)Google Scholar
20 Shelby, J. E., J. App. Phys. 51 (5), 2561 (1980).Google Scholar
21 Connors, S. L., M. S. Thesis, Alfred University, Alfred, NY (1992).Google Scholar
22 Allred, C. L., Borenstein, J. T., Hobbs, L. W., in Materials Science of Microelectromechanical Systems (MEMS) Devices IV, edited by Ayon, A.A., Spearing, S.M., Buchheit, T., and Kahn, H., (Mater. Res. Soc. Symp. Proc. 687, Boston, MA, 2002), pp. 137142.Google Scholar