Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:24:51.905Z Has data issue: false hasContentIssue false

Deep Diffusions and Soi Layers Produced by Rapid Thermal Processing for Smart Power Applications

Published online by Cambridge University Press:  10 February 2011

J-M. Dilhac
Affiliation:
LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse CEDEX4, FRANCE, dilhac@laas.fr
L. Cornibert
Affiliation:
LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse CEDEX4, FRANCE, dilhac@laas.fr
C. Ganibal
Affiliation:
LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse CEDEX4, FRANCE, dilhac@laas.fr
Get access

Abstract

Power devices often contain very deep boron diffusions extending through the thickness of the wafer to create junction isolation. In this paper we first report our investigations to replace the standard solid-state deep diffusion, with Temperature-Gradient Zone Melting (TGZM). During TGZM, a molten silicon/aluminium solution moves through a Si wafer in minutes, leaving a highly Al doped trail behind it. The liquid phase diffusion is driven by the vertical thermal gradient created in the wafer by a properly designed RTP.

On the other hand, for the purpose of high voltage (> 400V) smart power applications, substrates with localised and thick SOI layers are needed. We also present a method for recrystallization of thick poly silicon films by Lateral Epitaxial Growth over Oxide (LEGO), using a similarly designed RTP.

The two processes, that is LEGO and TGZM, use a Rapid Thermal Processor and are compatible. The RTP is specially designed to create a thermal gradient perpendicular to the wafer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pfann, W.G., Zone Melting. 2nd ed. (John Wiley and Sons, Inc., New York, 1963).Google Scholar
2. Nagel, D., Kuhlmann, U., Sittig, R., Solid-State Electron., 39(7), 965970 (1996).Google Scholar
3. Campbell, P.K., Jones, K.E., Huber, R.J., Horch, K.W., Normann, R.A., IEEE. Trans, on Biomed. Eng., 38(8), 758768 (1991).Google Scholar
4. Kobayashi, K., Hamajima, T., Kikuchi, H., Takahashi, M. and Arai, K., ISPSD'95, Yokohama, 23–25 May 1995, 5862.Google Scholar
5. Harendt, C. et al., IEEE Intern. SOI Conf., 152153 (1995).Google Scholar
6. Dilhac, J-M. et al., ISPSD'96, 215218 (1995).Google Scholar
7. Celler, G.K., Robinson, M., Lichner, D.J., Appl. Phys. Lett. 42(4), 99101 (1983).Google Scholar
8. Eyer, A., Reis, I., Schindler, R., Wagner, B., RTP'93, Scottsdale (USA), Fair, R.B., Lojek, B. ed., 444450 (1993).Google Scholar
9. Cline, H.E, Anthony, T.R. J. Appl. Phys. Vol 47(6), 23322336 (1976).Google Scholar
10. Lischner, D.J., Basseches, H., D'Altroy, F.A. J. Electrochem. Soc. 132(12), 29973001 (1985).Google Scholar
11. Norskoy, A.C., Warner, R.M., J. Appl. Phys. Vol 52(3), 15521554 (1981).Google Scholar
12. Charitat, G., Rossel, P., LAAS report n° 93298, April 1993.Google Scholar
13. Celler, G. K., Trimble, L. E., Wilson, L. O. in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D.K., Rozgonyi, G.A. and Shank, C.V. (Mater. Res. Soc. Proc. 35, Pittsburgh, PA, 1985) 635640.Google Scholar
14. Wilson, L. O., Celler, G. K., Trimble, L. E., J. Electrochem. Soc: SST, 133(2), 383389 (1986).Google Scholar
15. Chang, M.F., J. Electrochem. Soc, 128(9), 19631967 (1981).Google Scholar