Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:48:50.887Z Has data issue: false hasContentIssue false

Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides

Published online by Cambridge University Press:  08 September 2011

Changwon Suh
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A.
Kwiseon Kim
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A.
Joseph J. Berry
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A.
Jinsuk Lee
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A.
Wesley B. Jones
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A.
Get access

Abstract

The purpose of this paper is to accelerate the pace of material discovery processes by systematically visualizing the huge search space that conventionally needs to be explored. To this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical intuition for decision-making, but also to utilize knowledge-based data mining methodologies in the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on examples using high-dimensional visualizations such as radial visualization combined with machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and visualize the search space (i.e. structure maps) of functional materials design. The vital role of search space generated from these approaches is discussed in the context of crystal chemistry of delafossite crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pettifor, D. G., in Crystal Structures of Intermetallic Compounds, edited by J.H, W.and Fleisher, R. L. (John Wiley & Sons, New York, 1994) p. 195.Google Scholar
2. Perkins, J. D., del Cueto, J. A., Alleman, J. L., Warmsingh, C., Keyes, B. M., Gedvilas, L. M., Parilla, P. A., To, B., Readey, D. W. and Ginley, D. S., Thin Solid Films 411, 152 (2002).Google Scholar
3. Suh, C., Gorrie, C. W., Perkins, J. D., Graf, P. A. and Jones, W. B., Acta Mater. 59, 630 (2011).Google Scholar
4. Shannon, R. and Prewitt, C., J. Inorg. Nucl. Chem. 32, 1427 (1970).Google Scholar
5. Shannon, R. D., Gillson, J. L. and Bouchard, R. J., J. Phys. Chem. Solids, 38, 877 (1977).Google Scholar
6. Kammler, D., Mason, T. and Poeppelmeier, K., J. Am. Ceram. Soc. 84, 1004 (2001).Google Scholar
7. Marquardt, M., Ashmore, N. and Cann, D., Thin Solid Films 496, 146 (2006).Google Scholar
8. Mizoguchi, H., Hirano, M., Fujitsu, S. and Takeuchi, T., Ueda, K., and Hosono, H., Appl. Phys. Lett. 80, 1207 (2002).Google Scholar
9. Banerjee, A. and Chattopadhyay, K., Prog. Cryst. Growth Ch. 50, 52 (2005).Google Scholar
10. Buljan, A., Llunell, M., Ruiz, E. and Alemany, P., Chem. Mater. 13, 338 (2001).Google Scholar
11. Vegas, A. and Isea, R., Acta Crystallogr. B 54, 732 (1998).Google Scholar
12. Tsuboi, N., Hoshino, T., Kobayashi, S., Kato, K. and Kaneko, F., Phys. Stat. Sol. (a).203, 2723 (2006).Google Scholar
13. Tate, J., Jayaraj, M., Draeseke, A., Ulbrich, T., Sleight, A., Vanaja, K., Nagarajan, R., Wager, J. and Hoffman, R., Thin Solid Films 411, 119 (2002).Google Scholar
14. Sheets, W. C., Stampler, E. S., Bertoni, M. I., Sasaki, M., Marks, T. J., Mason, T. O. and Poeppelmeier, K. R., Inorg. Chem. 47, 2696 (2008).Google Scholar
15. Sauvage, F. and Munoz-Roja, D., Poeppelmeier, K.R., and Casañ -Pastor, N., J. Solid State Chem. 182, 374 (2009).Google Scholar
16. Sadik, P. W., Ivill, M., Craciun, V. and Norton, D. P., Thin Solid Films 517, 3211 (2009).Google Scholar
17. Okuda, T., Jufuku, N., Hidaka, S. and Terada, N., Phys. Rev. B 72, 144403 (2005).Google Scholar
18. Ono, Y., Satoh, K.-i., Nozaki, T. and Kajitani, T., Jpn. J. Appl. Phys. 46, 1071 (2007).Google Scholar
19. Nozaki, T., Hayashi, K. and Kajitani, T., J. Electron. Mater. 39, 1798 (2010).Google Scholar
20. Nagarajan, R., Draeseke, A., Sleight, A. and Tate, J., J. Appl. Phys. 89, 8022 (2001).Google Scholar
21. Nagarajan, R., Duan, N., Jayaraj, M., Li, J., Vanaja, K., Yokochi, A., Draeseke, A., Tate, J. and Sleight, A., Int. J. Inorg. Mater. 3, 265 (2001).Google Scholar
22. Miyasaka, N., Doi, Y. and Hinatsu, Y., J.Solid State Chem. 182, 2104 (2009).Google Scholar
23. Lalanne, M., Barnabé, A., Mathieu, F. and Tailhades, P., Inorg. Chem. 48, 6065 (2009).Google Scholar
24. Kykyneshi, R., Nielsen, B., Tate, J., Li, J. and Sleight, A., J. Appl. Phys. 96, 6188 (2004).Google Scholar
25. Kandpal, H. and Seshadri, R., Solid State Sci. 4, 1045 (2002).Google Scholar
26. Isea, R., Vegas, A. and Ramos-Gallardo, A., Acta Crystallogr. B 54, 35 (1998).Google Scholar
27. Götzendörfer, S. and Löbmann, P., J.Sol-Gel Sci.Technol. DOI: 10.1007/s10971-010-2336-0 (2010).Google Scholar
28. Wongcharoen, N. and Gaewdang, T., Phys. Proc. 2, 101 (2009).Google Scholar
29. Doumerc, J.-P., Ammar, A., Wichainchai, A., Pouchard, M. and Hagenmuller, P., J. Phys. Chem. Sol. 48, 37 (1987).Google Scholar
30. Dong, G., Zhang, M., Li, T. and Yan, H., J. Electrochem. Soc. 157, H127 (2010).Google Scholar
31. Ashmore, N. and Cann, D., J. Mater. Sci. 40, 3891 (2005).Google Scholar
32. Bywalez, R., Goetzendoerfer, S. and Loebmann, P., J. Mater. Chem. 20, 6562 (2010).Google Scholar
33. Buljan, A., Alemany, P. and Ruiz, E., J. Phys. Chem. B 103, 8060 (1999).Google Scholar
34. Bessekhouad, Y., Gabes, Y., Bouguelia, A. and Trari, M., J. Mater. Sci. 42, 6469 (2007).Google Scholar
35. El Ataoui, K., Doumerc, J., Ammar, A., Gravereau, P., Fournčs, L., Wattiaux, A. and Pouchard, M., Sol. State. Sci. 5, 1239 (2003).Google Scholar
36. Beznosikov, B. V. and Aleksandrov, K. S., Institute of Physics, Siberian Division, Russ. Acad. Sci. Krasnoyarsk, Preprint No. 843F, 2007.Google Scholar
37. Beznosikov, B. V. and Aleksandrov, K. S., J. Struct. Chem+. 50, 102 (2009).Google Scholar
38. Suh, C. and Rajan, K., Mats. Sci. Tech. 25, 466 (2009).Google Scholar
39. Brunsdon, C., Fotheringham, A. and Charlton, M., Technical Report Series, 43, 55 (1998).Google Scholar
40. McCarthy, J., Marx, K., Hoffman, P., Gee, A., O’Neil, P., Ujwal, M. and Hotchkiss, J., Ann. NY. Acad. Sci. 1020, 239 (2004).Google Scholar
41. Leban, G., Zupan, B., Vidmar, G. and Bratko, I., Data Min. Knowl. Disc. 13, 119 (2006).Google Scholar
42. Mramor, M., Leban, G., Demsar, J. and Zupan, B., Bioinformatics 23, 2147 (2007).Google Scholar
43. Han, J. and Kamber, M., Data Mining - Concepts and Techniques. (Morgan Kaufmann Publishers, San Francisco, 2006) p.348.Google Scholar
44. Kamath, C., Scientific Data Mining - A practical Perspective. (SIAM, Philadelphia) p. 185.Google Scholar