Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:01:28.446Z Has data issue: false hasContentIssue false

Damage formation in GaN under medium energy range implantation of rare earth ions: a combined TEM, XRD and RBS/C investigation

Published online by Cambridge University Press:  30 June 2011

B. Lacroix
Affiliation:
CIMAP, UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6 Bd Maréchal Juin, 14050 Caen, France
S. Leclerc
Affiliation:
CIMAP, UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6 Bd Maréchal Juin, 14050 Caen, France
P. Ruterana
Affiliation:
CIMAP, UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6 Bd Maréchal Juin, 14050 Caen, France
A. Declémy
Affiliation:
Institut P’, CNRS-Université de Poitiers-ENSMA, SP2MI-BP 30179, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope cedex, France
S.M.C. Miranda
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
K. Lorenz
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
E. Alves
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
Get access

Abstract

In this work, the damage formation subsequent to Eu implantation at 300 keV has been investigated by coupling the TEM, XRD and RBS/C techniques. It has been found that GaN exhibits a specific damage buildup in three main steps: (i) clustering of point defects and formation of a network of stacking faults defects in the bulk, (ii) propagation of the planar defect network towards the surface and (iii) breakdown of the surface layer. This occurs through different strain saturation regimes. Around 5x1014 Eu/cm2, the strain along the implantation direction saturates to 0.6%. At higher fluence, whereas the peak at 0.6% is maintained, there is an increase of the strain throughout the implanted layer which probably continues to extend. A second saturation occurs when the stacking fault network reaches the layer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steckl, A. J., Heikenfeld, J., Lee, D. S. and Garter, M., Mat. Sci. and Eng. B 81, 97 (2001).Google Scholar
2. Lee, D. S. and Steckl, A. J., Appl. Phys. Lett. 80, 1888 (2002).Google Scholar
3. Kucheyev, S. O., Williams, J.S., Jagadish, C., Zou, J. and Li, G., Phys. Rev. B 62, 7510 (2000).Google Scholar
4. Gloux, F., Wojtowicz, T., Ruterana, P., Lorenz, K., and Alves, E., J. Appl. Phys. 100, 073520 (2006).Google Scholar
5. Potin, V., Ruterana, P. and Nouet, G., J. Phys. Condens. Matter 12, 10301 (2000).Google Scholar
6. Ruterana, P., Nouet, G., Phys. Stat. Sol. (b).227, 177 (2001).Google Scholar
7. Ruterana, P., Lacroix, B. and Lorenz, K., J. Appl. Phys. 109, 013506 (2011).Google Scholar
8. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
9. Lorenz, K., Barradas, N. P., Alves, E., Roqan, I. S., Nogales, E., Martin, R. W., O’Donnell, K. P., Gloux, F. and Ruterana, P., J. Phys. D: Appl. Phys. 42 165103 (2009).Google Scholar
10. Leclerc, S., Declémy, A., Beaufort, M. F., Tromas, C., and Barbot, J. F., J. Appl. Phys. 98, 113506 (2005).Google Scholar
11. Debelle, A. and Declémy, A., Nucl. Instrum. Meth. Phys. Res. B 268, 1460 (2010).Google Scholar
12. Jiang, W., Weber, W. J., Wang, L. M. and Sun, K., Nucl. Instrum. Meth. Phys. Res. B 218, 427 (2004).Google Scholar
13. Gloux, F., Ruterana, P., Lorenz, K. and Alves, E., Phys. Stat. Sol. (a) 205, 68 (2008).Google Scholar
14. Lorenz, K., Alves, E., Gloux, F., Ruterana, P., Peres, M., Neves, A. J., and Monteiro, T., J. Appl. Phys. 107, 023525 (2010).Google Scholar