Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-29T00:05:47.414Z Has data issue: false hasContentIssue false

Current Transport in Low-Resistance Metal-InP Contacts

Published online by Cambridge University Press:  22 February 2011

Thomas Clausen
Affiliation:
Mikroelektronik Centret, Technical University of Denmark, Bldg. 345E, DK-2800 Lyngby, Denmark
Otto Leistiko
Affiliation:
Mikroelektronik Centret, Technical University of Denmark, Bldg. 345E, DK-2800 Lyngby, Denmark
Get access

Abstract

The limiting transport processes for current flow across metal-semiconductor (MS) ohmic contacts to n- and p-type InP have been investigated for Au-based metallizations containing the doping elements Germanium and Zinc. It has been found that the Schottky barrier is lowered and in some cases vanishes during annealing. The current flow for an optimal ohmic contact is diffusion limited by a Fermi potential difference between the alloyed metallization and the bulk InP. For non-optimal ohmic contacts the current flow is also limited by thermionic emission across a low effective Schottky barrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robinson, G. Y., in Physics and Chemistry of III-V Compound Semiconductor Interfaces, edited by Wilmsen, C. (Plenum Press, 1985) p. 73.Google Scholar
2. Dingfen, W. and Heime, K., Electronics Lett. 18(22), 940 (1982).Google Scholar
3. Dingfen, W., Dening, W. and Heime, K., Solid-St. Electronics 29(5), 489 (1986).Google Scholar
4. Gupta, R. P. and Khokle, W. S., IEEE EDL-6 6, 300 (1985).Google Scholar
5. Brezeanu, G., Cabuz, C., Dascalu, D. and Dan, P.A., Solid-St. Electronics 30(5), 527 (1987).Google Scholar
6. Kupka, R. K. and W, W. Anderson, J. Appl. Phys. 69(6), 3623 (1991).Google Scholar
7. Braslau, N., J. Vac. Sci. Technol. 19(3), 803 (1981).Google Scholar
8. Shen, T. C., Gao, G.B. and Morkoc, H., J. Vac. Sci. Technol. B 10(5), 2113 (1992).Google Scholar
9. Alamo, J. A. del and Mizutani, T., Solid-St. Electronics 31(11), 1635 (1988).Google Scholar
10. Morkoc, H., Drummond, T. J. and Stanchak, C. M., IEEE ED-28 1, 1 (1981).Google Scholar
11. Boos, J. B., Kruppa, W. and Papanicolaou, A., Thin Solid Films 102, 161 (1988).Google Scholar
12. Boos, J. B. and Kruppa, W., J. Vac. Sci. Technol. B7(3), 502 (1989).Google Scholar
13. Cox, R. H. and Strack, H., Solid-St. Electronics 10, 1213 (1967).Google Scholar
14. Clausen, T., PhD thesis, Technical University of Denmark, 1993.Google Scholar
15. Shur, M., GaAs Devices and Circuits, (Plenum Press, 1987).Google Scholar