Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:22:22.605Z Has data issue: false hasContentIssue false

Current Gain Simulation of Npn AlGaN/GaN Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  15 March 2011

C. Monier
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
A. G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. C. Chang
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
L. Zhang
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
J. LaRoche
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
Get access

Abstract

A drift-diffusion model has been used to explore the performance capabilities of Npn AlGaN/GaN heterojunction bipolar transistors. Numerical results have been employed to study the effect of the p-type Mg doping and its incomplete ionization on device performance. The high base resistance induced by the deep acceptor level is found to be the cause of limited current gain values for Npn devices. Several computation approaches have been considered to improve their performance. Reasonable improvement of the DC current gain β is observed by realistically reducing the base thickness in accordance with processing limitations. Base transport enhancement is also predicted by the introduction of a quasi-electric field in the base.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCarthy, L. S., Kozodoy, P., Rodwell, M. J. W., DenBaars, S. P., and Mishra, U. K., IEEE Electron Device Lett. 20, 277, (1999).Google Scholar
2. Ren, F., Abernathy, C. R., Hove, J. M. Van, Chow, P. P., Hickman, R., Klaassen, J. J., Kopf, R. F., Cho, H., Jung, K. B., Laroche, J. R., Wilson, R. G., Han, J., Shul, R. J., Baca, A. G., and Pearton, S. J., MRS Internet J. Nitride Semicond. Res. 3, 41, (1998).Google Scholar
3. Han, J., Baca, A. G., Shul, R. J., Willison, C. G., Zhang, L., Ren, F., Zhang, A. P., Dang, G. T., Donovan, S. M., Cao, X. C., Cho, H., Jung, K. B., Abernathy, C. R., Pearton, S. J., and Wilson, R. G., Appl. Phys. Lett. 74, 2702, (1999).Google Scholar
4. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys 85, 3222, (1999).Google Scholar
5. Kozodoy, P., Hansen, M., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 74, 3681, (1999).Google Scholar
6. Shur, M.S., Bykhovski, A. D., and Gaska, R., Solid State Electron. 44, 205 (2000); P. M. Asbeck, E. T. Yu, SS. Lau, W. Sun, X. Dang, and C. Shi, Solid State Electron. 44, 211, (2000).Google Scholar
7. Alekseev, E., and Pavlidis, D., Solid State Electron. 44, 245, (2000).Google Scholar
8. Lambert, D. J. H., Lin, D. E., Dupuis, R. D., Solid State Electron. 44, 253, (2000).Google Scholar
9. Atlas, Silvaco International, Santa Clara, CA (1997)Google Scholar
10. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys 86, 1, (1999).Google Scholar
11. Shur, M., Gelmont, B., and Khan, M. Asif, J. Electron. Mat. 25, 777, (1996).Google Scholar
12. Bandic, Z. Z., Bridger, P. M., Piquette, E. C., and McGill, T. C., Appl. Phys. Lett. 73, 3276, (1998).; Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 72, 3166, (1998).Google Scholar