Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:58:23.121Z Has data issue: false hasContentIssue false

Cu2ZnSnSe4 thin films prepared by selenization of precursor evaporated from Cu2ZnSnSe4 and Na2Se

Published online by Cambridge University Press:  11 March 2014

Mitsuki Nakashima
Affiliation:
Wakayama National College of Technology, 77 Noshima, Nada, Gobo 644-0023, Japan
Toshiyuki Yamaguchi
Affiliation:
Wakayama National College of Technology, 77 Noshima, Nada, Gobo 644-0023, Japan
Masanobu Izaki
Affiliation:
Toyohashi University of Technology, 1-1 Hibarigaoka Tenpaku-cho, Toyohashi 441-8580, Japan
Get access

Abstract

Cu2ZnSnSe4 thin films were prepared by using the synthesized Cu2ZnSnSe4 ingot and Na2Se powder at various Na2Se/Cu2ZnSnSe4 mole ratio as evaporation materials for selenization process. From EPMA analysis, the composition was approximately constant even if the Na2Se/Cu2ZnSnSe4 mole ratio increased. X-ray diffraction studies revealed that the thin films had a kesterite Cu2ZnSnSe4 structure and the foreign phases disappeared with increasing the Na2Se/Cu2ZnSnSe4 mole ratio. The Na2Se addition enhanced to grow thin films having a close-packed structure and columnar grains. The values of Voc and Isc in Cu2ZnSnSe4 thin film solar cells increased with increasing the Na2Se/Cu2ZnSnSe4 mole ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., and Powalla, M., Prog. Photovolt., Res. Appl. 19, 894 (2011).10.1002/pip.1078CrossRefGoogle Scholar
Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K., and Mitzi, D. B., Prog. Photovolt., Res. Appl. 20, 6 (2012).10.1002/pip.1160CrossRefGoogle Scholar
Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., and Mitzi, D. B., Adv. Energy Mater. 3 (2013) 34.10.1002/aenm.201200348CrossRefGoogle Scholar
Zhang, Y., Yoshihara, T., and Yamada, A., Appl. Phys. Express 5, 012301 (2012).10.1143/APEX.5.012301CrossRefGoogle Scholar
Ito, K. and Nakazawa, T., Jpn. J. Appl. Phys. 27, 2094 (1988).10.1143/JJAP.27.2094CrossRefGoogle Scholar
Katagiri, H., Sasaguchi, N., Hando, S., Hoshino, S., Ohashi, J., and Yokota, T., Sol. Energy Mater. Sol. Cells 49, 407 (1997).10.1016/S0927-0248(97)00119-0CrossRefGoogle Scholar
Katagiri, H., Thin Solid Films 480, 426 (2005).10.1016/j.tsf.2004.11.024CrossRefGoogle Scholar
Katagiri, H., Jimbo, K., Yamada, S., Kamiura, T., Maw, W. S., Fukano, T., and Motohiro, T., Appl. Phys. Express 1, 041201 (2008).10.1143/APEX.1.041201CrossRefGoogle Scholar
Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N. A., Chey, S. J., and Guha, S., Prog. Photovolt., Res. Appl.; DOI: 10.1002 / pip. 1174 (2011)Google Scholar
Zoppi, G., Forbes, I., Miles, R. W., Gale, P. J., Scragg, J. J., and Peter, L. M., Prog. Photovolt., Res. Appl. 17, 315 (2009).10.1002/pip.886CrossRefGoogle Scholar
Guo, L., Zhu, Y., Gunawan, O., Gokmen, T., Deline, V. R., Ahmed, S., Romankiw, L. T., and Deligianni, H., Prog. Photovolt., Res. Appl.; DOI: 10.1002 / pip.2332 (2012)Google Scholar
Repins, I., Beall, C., Vora, N., DeHart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W. C., Goodrich, A., and Noufi, R., Solar Energy Materials & Solar Cells 101, 154 (2012).10.1016/j.solmat.2012.01.008CrossRefGoogle Scholar
Yamaguchi, T., Oka, Y., Niiyama, S., and Imanishi, T., Phys. Status Solidi C 10, 1067 (2013).10.1002/pssc.201200809CrossRefGoogle Scholar
Katagiri, H. and Jinbo, K., The Japan Society of Applied Physics, Extended Abstracts; (The 72nd Autumn Meeting, 2011) p.68.Google Scholar