Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:47:25.640Z Has data issue: false hasContentIssue false

Cs+ and Sr2+ Ion-Exchange Properties of Microporous Tungstates

Published online by Cambridge University Press:  01 February 2011

Vittorio Luca
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Christopher S. Griffith
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Harriet Chronis
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Jonathan Widjaja
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Huijun Li
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Nicholas Scales
Affiliation:
Materials and Engineering Sciences, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, AUSTRALIA
Get access

Abstract

The hydrothermally prepared hexagonal tungsten bronze (HTB) phase displays promising distribution coefficients (KD) for both Cs+ (2 – 100 ppm) and Sr2+ (0.5 – 60 ppm) in acidic (1M HNO3) radioactive waste simulants. The development of an inorganic ion-exchanger that displays such selectivity has previously eluded researchers in this field. The selectivity for Cs+ and Sr2+ can be modulated by isomorphous substitution of molybdenum into the tungstate framework, and is optimum for material of nominal composition, Na0.2Mo0.03W0.97O3·zH2O (Mo-HTB). Both the parent HTB and Mo-HTB phases display fast ion-exchange kinetics for Cs+ and Sr2+ and cation exchange capacities ca. 50% that of the theoretical capacities of 0.9 and 0.45 mmol.g−1, respectively. The Mo-HTB adsorbent has a modest tolerance to alkali metal ions such as Na+ and K+ in acidic solutions with total Cs+ and Sr2+ uptake dropping by 66% as the concentration of Na+ increases from 9 mmol.L−1 to 1200 mmol L−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Todd, T.A., Brewer, K.N., Law, J.D., Wood, D.J., Garn, T.G., Tillotson, R.D., Tullock, P.A., and Wade, E.L., Waste Management (1997), pp. 23682376.Google Scholar
2. Harjula, R., Lehto, J., Paajanen, A., and Brodkin, L, Nucl. Sci. Eng. 137, 206 (2001).Google Scholar
3. Todd, T.A., Mann, N.R., Tranter, T.J., Sebesta, F., John, J., and Motl, A., J. Radioanal. Nucl. Chem. 254, 47 (2002).Google Scholar
4. Rraum, R., Dangieri, T.J., Fennelly, D.J., Sherman, J.D., Schwerin, W.C., Willis, R.R., Bray, L.A., Brown, G.N., Brown, N.E., Miller, J.E., Lee, D.D., Anthony, R.G., Philip, C.V., Borek, T.T., and Connors, W.J., Proc. Int. Top. Meet. Nucl. Hazard. Waste Manage., SPECTRUM ′96, 6th, 1996), pp. 204213.Google Scholar
5. Miller, J.E. and Brown, N.E., SAND97–0771, 1997.Google Scholar
6. Behrens, E.A., Poojary, D.M. and Clearfield, A., Chem. Mater. 8, 1236 (1996).Google Scholar
7. Moller, T., Harjula, R. and Lehto, J., Sep. Purif. Technol. 28, 13 (2002).Google Scholar
8. Reis, K.P., Ramanan, A. and Whittingham, M. S., Chem. Mater. 2, 219 (1990).Google Scholar
9. Reis, K.P., Prince, E. and Whittingham, M. S., Chem. Mater. 4, 307 (1992).Google Scholar
10. Reis, K.P., Ramanan, A. and Whittingham, M. S., J. Solid State Chem. 96, 31 (1992).Google Scholar
11. Guo, J.D. and Whittingham, M.S., Int. J. Mod. Phys. B, 4145 (1993).Google Scholar
12. Luca, V., Hanna, J.V., Smith, M.E., James, M., Mitchell, D.R.G., and Bartlett, J.R., Microporous Mesoporous Mater. 55, 1 (2002).Google Scholar
13. Moller, T., Clearfield, A. and Harjula, R., Chem. Mater. 13, 4767 (2001).Google Scholar
14. Wilding, M.W., U.S. At. Energy Comm. IDO–14544 (1961) 29 p.Google Scholar
15. Tranter, T.J., Herbst, R.S., Todd, T.A., Olson, A.L., and Eldredge, H.B., Adv. Env. Res. 6, 107 (2002).Google Scholar
16. Miller, C.J., Olson, A.L., Johnson, C.K., Sep. Sci. Technol. 32, 37 (1997).Google Scholar