Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:39:04.589Z Has data issue: false hasContentIssue false

The Crystal-Melt Interface in Si or Ge

Published online by Cambridge University Press:  21 February 2011

Frans Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Yan Shao
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Get access

Abstract

From the nucleation data on undercooling of liquid Si or Ge, crystal-melt interfacial tensions are calculated. Only a temperature-dependent tension can account simultaneously for the results of experiments on bulk and thin film Si. The observed temperature dependence can be accounted for by reasonable values of the interfacial entropy and enthalpy. The analysis is used to determine the temperature-dependent interfacial tension for Ge. A comparison of results for Ge and Si indicates that homogeneous nucleation has not been achieved in the undercooling of bulk liquid Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Surek, T. and Chalmers, B., J. Crystal Growth 29, 1 (1975); T. Surek, Scripta metall. 10, 425 (1976); G.A. Satunkin, V.A. Tatarchenko and V.I. Shaitanov, J. Crystal Growth 50, 133 (1980); Liquid Metals: Chemistry and Physics, S.Z. Beer, ed. (Marcel Dekker, NY, 1972); W. Bardsley, F.C. Frank, G.W. Green and D.T.J. Hurle, J. Crystal Growth 23, 341 (1974).Google Scholar
2 Devaud, G. and Turnbull, D., Appl. Phys. Lett. 46, 844 (1985).Google Scholar
3 Shao, Y. and Spaepen, F., submitted to J. Appl. Phys.Google Scholar
4 Stiffler, S.R., Thompson, M.O. and Peercy, P.S., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
5 Evans, P.V., Devaud, G., Kelly, T.F. and Kim, Y-W., Acta metall. 38, 719 (1990).Google Scholar
6 Devaud, G. and Turnbull, D., Mater. Res. Soc. Symp. Proc. 57 (1986).Google Scholar
7 Lau, C.F. and Kui, H.W., Acta metall. 39, 323 (1991).Google Scholar
8 Turnbull, D., J. Chem. Phys. 20, 411 (1952).Google Scholar
9 Spaepen, F., in Solid State Physics, Ehrenreich, H. and Turnbull, D., eds., Vol. 47 (Academic Press, New York, 1994), p. 1.Google Scholar
10 Spaepen, F., Acta metall. 23, 729 (1975).Google Scholar
11 Spaepen, F. and Meyer, R.B., Scripta metall. 10, 257 (1976).Google Scholar
12 Nelson, D.R. and Spaepen, F., in Solid State Physics, Ehrenreich, H. and Turnbull, D., eds., Vol. 42 (Academic Press, New York, 1989), p. 190.Google Scholar