Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:19:52.671Z Has data issue: false hasContentIssue false

Crystallization of Synthetic Hemozoin (Beta-Hematin) Nucleated at the Surface of Synthetic Neutral Lipid Bodies

Published online by Cambridge University Press:  01 February 2011

Timothy J Egan
Affiliation:
Timothy.Egan@uct.ac.za University of Cape Town Chemisty, Rondebosch, South Africa
Anh N Hoang
Affiliation:
anh.n.hoang@vanderbilt.edu Vanderbilt University Material Science, Nashville, Tennessee, United States
Kanyile K Ncokazi
Affiliation:
KANYILE.NCOKAZI@uct.ac.za University of Cape Town Chemisty, Rondebosch, South Africa
Katherine A de Villiers
Affiliation:
katherine.devilliers@uct.ac.za University of Stellenbosch Chemistry and Polymer Science, Stellenbosch, South Africa
David W Wright
Affiliation:
david.wright@vanderbilt.edu Vanderbilt University Chemistry, nashville, Tennessee, United States
Get access

Abstract

The mechanism of formation of hemozoin, a detoxification by-product of several blood-feeding organisms including malaria parasites, has been a subject of debate; however, recent studies suggest that neutral lipids may serve as a catalyst. In this study, a model system consisting of an emulsion of synthetic lipid bodies, resembling their in vivo counterpart in composition and size, was employed to investigate the formation of β-hematin, synthetic hemozoin, at the lipid-water interface. The introduction of heme (Fe(III)PPIX) to this synthetic neutral lipid bodies system under biomimetic conditions (37°C, pH 4.8) produced beta-hematin with apparent first order kinetics and an average half life of 0.5 min. TEM of monoglycerides (MPG) extruded through a 200 nm filter with heme produced beta-hematin crystals aligned and parallel to the lipid/water interface. TEM data suggests that beta-hematin crystallizes via epitaxial nucleation at the lipid-water interface through interaction of Fe(III)PPIX with the polar head group and elongation occurs parallel this interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Vincent, S.H. Semin. Hematol. 26, 105–11(1989).Google Scholar
(2) Chou, A.C. Fitch, C.D. J. Clin. Invest. 68, 672677 (1981).Google Scholar
(3) Slater, A. F. Swiggard, W.J. Orton, B.R. Flitter, W.D. Goldberg, D.E. Cerami, A. Henderson, G.B. Proceedings of the National Academy of Sciences of the United States of America 88, 325329 (1991).Google Scholar
(4) Pagola, S. Stephens, P.W. Bohle, D.S. Kosar, A.D. Madsen, S.K. Nature 404, 307310 (2000).Google Scholar
(5) Ziegler, J. Linck, R. Wright, D.W. Curr Med Chem. 8, 171–89 (2001).Google Scholar
(6) Pisciotta, J.M. Coppens, I. A. Tripathi, K. Scholl, P.F. Shuman, J. Bajad, S. Shulaev, V. D. Sullivan, J. Biochem J. 402, 197204 (2007).Google Scholar
(7) Jackson, K. E. Klonis, N.; Ferguson, D.J.P. Adisa, A. Dogovski, C. Tilley, L. Mol Microbiol.54, 109122 (2004).Google Scholar
(8) Egan, T.J. Chen, J. Y.-J. Villiers, K. A. de, Mobotha, T. E. Naidoo, K. J. Ncokazi, K.K., Langford, S.J. McNaughton, D. Pandiancherri, S. Wood, B.R. FEBS Lett. 580, 51055110 (2006).Google Scholar
(9) Ncokazi, K.K. Egan, T.J. Anal Biochem. 338, 306319 (2005).Google Scholar
(10) Coppens, I. Vielemeyer, O. International Journal for Parasitology 35, 597615 (2005).Google Scholar
(11) Oliveira, M.F. d'Avila, J.C.P., Torres, C.R. Oliveira, P.L. Tempone, A.J. Rumjanek, F.D. Braga, C.M.S., Silva, J.R. Dansa-Petretski, M., Oliveira, M.A. Souza, W. de, Ferreira, S. T. Molecular and Biochemical Parasitology 111, 217221 (2000).Google Scholar
(12) Buller, R. M.L Peterson, Almarsson, O. Leiserowitz, L. Cryst. Growth Des. 2, 553562 (2002).Google Scholar