No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The mechanism of formation of hemozoin, a detoxification by-product of several blood-feeding organisms including malaria parasites, has been a subject of debate; however, recent studies suggest that neutral lipids may serve as a catalyst. In this study, a model system consisting of an emulsion of synthetic lipid bodies, resembling their in vivo counterpart in composition and size, was employed to investigate the formation of β-hematin, synthetic hemozoin, at the lipid-water interface. The introduction of heme (Fe(III)PPIX) to this synthetic neutral lipid bodies system under biomimetic conditions (37°C, pH 4.8) produced beta-hematin with apparent first order kinetics and an average half life of 0.5 min. TEM of monoglycerides (MPG) extruded through a 200 nm filter with heme produced beta-hematin crystals aligned and parallel to the lipid/water interface. TEM data suggests that beta-hematin crystallizes via epitaxial nucleation at the lipid-water interface through interaction of Fe(III)PPIX with the polar head group and elongation occurs parallel this interface.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.