Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:33:23.816Z Has data issue: false hasContentIssue false

Crystallization Kinetics in High-rate Electron Beam Evaporated Poly-Si Thin Film Solar Cells on ZnO:Al

Published online by Cambridge University Press:  01 February 2011

Tobias Sontheimer
Affiliation:
tobias.sontheimer@helmholtz-berlin.de, Helmholtz Zentrum Berlin, Silicon Photovoltaics, Berlin, Germany
Christiane Becker
Affiliation:
christiane.becker@helmholtz-berlin.de, Helmholtz Zentrum Berlin, Silicon Photovoltaics, Berlin, Berlin, Germany
Carola Klimm
Affiliation:
klimm@helmholtz-berlin.de, Helmholtz Zentrum Berlin, Silicon Photovoltaics, Berlin, Berlin, Germany
Stefan Gall
Affiliation:
gall@helmholtz-berlin.de, Helmholtz Zentrum Berlin, Silicon Photovoltaics, Berlin, Berlin, Germany
Bernd Rech
Affiliation:
bernd.rech@helmholtz-berlin.de, Helmholtz Zentrum Berlin, Silicon Photovoltaics, Berlin, Berlin, Germany
Get access

Abstract

The microstructure and crystallization kinetics of electron beam evaporated Si on ZnO:Al coated glass for polycrystalline solar cells was studied by electron backscatter diffraction and optical microscopy at various deposition temperatures. A time dependent analysis of the dynamics of the crystallization allowed for the individual determination of growth and nucleation processes. The nucleation process of Si on ZnO:Al was found to be influenced by a variation of the deposition temperature of the amorphous Si in a critical temperature regime of 200 ˚C to 300 ˚C. The nucleation rate decreased significantly with decreasing deposition temperature, while the activation energy for nucleation increased from 2.9 eV at a deposition temperature of 300 ˚C to 5.1 eV at 200 ˚C, resulting in poly-Si which comprised grains with features sizes of several μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matsuyama, T., Terada, N., Baba, T., Sawada, T., Tsuge, S., Wakisaka, K. and Tsuda, S., J. NonCryst. Sol. 198–200, 940 (1996).Google Scholar
2 Green, M.A., Basore, P.A., Chang, N., Clugston, D., Egan, R., Evans, R., Hogg, D., Jarnason, S., Keevers, M., Lasswell, P., O'Sullivan, J., Turner, A., Schubert, U., Wenham, S.R. and Young, T., Solar Energy 77, 857 (2004).Google Scholar
3 Keevers, M.J., Young, T.L., Schubert, U., M.A. Green in: Proc. of the 22nd European Photovoltaics Solar Energy Conference, Milan, Italy (2007), p.1783.Google Scholar
4 Sontheimer, T., Dogan, P., Becker, C., Gall, S., Rech, B., Schubert, U., Young, T., Partlin, S., Keevers, M., Egan, R. J. in: Proc. of the 24th European Photovoltaics Solar Energy Conference, Hamburg, (2009), p.2478.Google Scholar
5 Egan, R., Keevers, M., Schubert, U., Young, T., Evans, R., Partlin, S., Wolf, M., Schneider, J., Hogg, D., Eggleston, B., Green, M., Falk, F., Gawlik, A., Andrä, G., Werner, M., Hagendorf, C., Dogan, P., Sontheimer, T., Gall, S. in: Proc. of 24th European Photovoltaic Solar Energy Conference, Hamburg, (2009) 22802285 Google Scholar
6 Ruske, F., Roczen, M., Lee, K., Wimmer, M., Gall, S., Hüpkes, J., Hrunski, D., Rech, B., J. Appl. Phys. 107, 013708 (2010)Google Scholar
7 Becker, C., Ruske, F., Sontheimer, T., Gorka, B., Bloeck, U., Gall, S., Rech, B., J. Appl. Phys. 106, 084506 (2009).Google Scholar
8 Berginski, M. Hüpkes, J., Schulte, M., Schöpe, G., Stiebig, H., Rech, B., Wuttig, M., J. Appl. Phys 101, 074903 (2007).Google Scholar
9 Spinella, C., Lombardo, S. and Priolo, F., J. Appl. Phys. 84, 10 (1998).Google Scholar
10 Sontheimer, T., Becker, C., Bloeck, U., Gall, S., Rech, B., Appl. Phys. Lett. 95, 101902 (2009).Google Scholar
11 Köster, U., Phys. Stat. Sol. (a), 48, 313 (1978).Google Scholar