Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:49:31.616Z Has data issue: false hasContentIssue false

Creep of Particle-Reinforced NiAl Intermetallics: New Materials For Up to 1400°C

Published online by Cambridge University Press:  22 February 2011

E. Arzt
Affiliation:
Max-Planck-Institut fur Metallforschung, Stuttgart, and Institut für Metallkunde, University of Stuttgart, Germany
P. Grahle
Affiliation:
Max-Planck-Institut fur Metallforschung, Stuttgart, and Institut für Metallkunde, University of Stuttgart, Germany
Get access

Abstract

The intermetallic compound NiAl is a promising high temperature material as it possesses a favorable combination of advantageous properties (high melting point, low density, high thermal conductivity, good oxidation resistance). However its creep resistance is far inferior to that of advanced superalloys. We have developed new powder-metallurgical NiAl alloys, where the creep strength is raised by incorporating fine yttria dispersoids. The materials are produced by mechanical alloying and subsequent coarse-grain recrystallization at temperatures close to the solidus temperature. The resulting alloys show exceptional creep strength up to 1400 °C, thereby exeeding the temperature capability of superalloys significantly. The creep properties are in agreement with our recently developed model for “detachment-controlled creep”, in which the release of dislocations from incoherent particles determines the creep rate. In addition, the brittleness problem at room temperature can be moderately alleviated by incorporating coarse ductile phases such as Mo. While the particles raise the critical stress intensity factor, they do not improve the room temperature tensile ductility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Darolia, R., J. Metals, 43 (3), 44 (1991)Google Scholar
[2] Miracle, D.B., Acta metall. mater., 3, 649 (1993)Google Scholar
[3] Whittenberger, J.D., J. Mat. Sci., 22, 394 (1987)Google Scholar
[4] Software “Cambridge Materials Selector CMS 2.0”, Granta Design Limited (1994)Google Scholar
[5] Zöltzer, K., Proc. 13th. Int. Plansee Seminar, Eds. Bildstein, H., Eck, R., Metallwerk Plansee, Reutte, 3, 514 (1993)Google Scholar
[6] Arzt, E., Clemens, H., Grahle, P., Fischmeister, H., Wanner, A., Schietinger, B., Zöltzer, K., Deutsche Patentanmeldung P 44 24 356.1 (1994)Google Scholar
[7] Schietinger, B., Wanner, A., Arzt, E., Clemens, H., Fortschrittsberichte der Deutschen Keramischen Gesellschaft, 9, 123 (1994)Google Scholar
[8] Srawley, J.E., Int. J. Fracture, 12, 475 (1976)Google Scholar
[9] Hancock, G., McDonnell, Phys. Stat. Sol. A, 4, 143 (1971)Google Scholar
[10] Kaur, I., Gust, W., Fundametals of Grain and Interphase Boundary Diffusion, 2nd Edition, Ziegler Press Stuttgart, 303 (1989)Google Scholar
[11] Sherby, O.D., Klundt, R.H., Miller, A.K., Met.Trans A, 8A, 843 (1977)Google Scholar
[12] Grahle, P., Arzt, E., to be publishedGoogle Scholar
[13] Arzt, E., Res. Mechanica, 31, 399 (1991)Google Scholar
[14] Rösier, J., Joos, R., Arzt, E., Met. Trans. A, 23A, 1521 (1992)Google Scholar
[15] Nardone, V.C., Tien, J.K., Scripta Met., 17, 467 (1983)Google Scholar
[16] Schroder, J.H., Arzt, E., Scripta Met. 1129 (1985)Google Scholar
[17] Rösier, J., Arzt, E., Acta metall., 38, 671 (1990)Google Scholar
[18] Srolovitz, D.J., Petkovic-Luton, R., Luton, M.J., Scripta Met., 16, 1401 (1982)Google Scholar
[19] Arzt, E., Wilkinson, D.S., Acta metall., 34, 1893 (1986)Google Scholar
[20] Ashby, M.F., Ebeling, R., Trans. Met. Soc. AIME, 226, 1396 (1966)Google Scholar
[21] Arzt, E., Gohring, E., Grahle, P., High-Temperature Ordered Intermetallic Alloys V, Eds. Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M. H., Vol. 288, Materials Research Society, Pittsburgh, PA(1993), 861 on 886Google Scholar
[22] Arzt, E., Göhring, E., Scripta metall. mater. 28, 843 (1993)Google Scholar
[23] Locci, I.E., Dickerson, R., Bowman, R.R., Whittenberger, J.D., Nathal, M.V., Darolia, R. (1993), High-Temperature Ordered Intermetallic Alloys V, Eds. Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M. H., Vol. 288, Materials Research Society, Pittsburgh, PA(1993), 685 on –690 Google Scholar
[24] Whittenberger, J.D., Arzt, E., Luton, M.J., Scripta metall. mater., 26, 1925 (1992)Google Scholar
[25] Bose, S., Mat. Sci. Eng. A155, 217 (1992)Google Scholar
[26] Frost, H.J., Ashby, M.F., Deformation Mechanism Maps, Pergamon Press, Oxford (1982)Google Scholar
[27] Wanner, A., Schietinger, B., Arzt, E., to be publishedGoogle Scholar