Published online by Cambridge University Press: 16 March 2012
We report a comprehensive study of the cost of materials used in the thermoelectric module as the elements, substrate, and metal interconnect are optimized for maximum output power. The power conversion cost [$/W] is analyzed. The maximum power output is found by matching both thermal and electrical impedances to the external load and heat sink. The fractional area coverage or fill factor of the thermoelement (leg) in the module is a key factor which affects the overall cost of the waste heat recovery system. Thermal spreading resistance is a function of the thermal conductivity and the thickness of the substrates. Also the air gap between the legs contributes to parasitic heat loss from the hot to the cold substrate through heat conduction and radiative heat transfer. The optimum fill factor under atmospheric air-pressure is found to be on the order of a few percent. We also take into account the three-dimensional current flow and the effect of the metallization thickness on the series resistance in the module. Calculations identify the minimum metal trace thickness needed to have a minimum impact on output power generation.