Published online by Cambridge University Press: 15 February 2011
In-situ corrosion tests on nuclear waste glasses in Boom clay provided direct contact glass-clay at 90°C, for periods of 2, 3.5 and 7.5 years. The corroded reference glasses (two R7T7 type glasses, four Pamela type glasses), were studied in terms of SIMS (secondary ion mass spectroscopy) and mass losses.
The Al2O3 rich Pamela glasses appear to corrode in a selective-substitutional way, the other glasses dissolve almost congruently. Differences in the corrosion extent between the glasses are associated with compositional differences and secondary phase formation. SIMS analysis provides the reaction layer thickness and the relative element behaviour in this layer. Although relatively few, the data have provided a coherent picture of glass corrosion, in terms of corrosion mechanisms, time and glass composition dependence.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.