Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:22:36.556Z Has data issue: false hasContentIssue false

Correlation of Substituent Parameter Values to Electronic Properties of Molecules

Published online by Cambridge University Press:  11 February 2011

Natalie Carroll
Affiliation:
Chemistry Department, Drexel University, Philadelphia, PA, 19104, U.S.A.
Nikita Matsunaga
Affiliation:
Department of Chemistry and Biochemistry, Long Island University, Brooklyn N.Y., 11201, U.S.A.
Karl Sohlberg
Affiliation:
Chemistry Department, Drexel University, Philadelphia, PA, 19104, U.S.A.
Get access

Abstract

There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We have demonstrated that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate very strongly with features of the charge migration process. This result supports the use of the σ values as a low cost time saving tool in the selection of compounds for use in molecular electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W. and Tour, J. M., Applied Physics Letters 77 (8), 1224 (2000).CrossRefGoogle Scholar
2. Chen, J., Reed, M.A., Rawlett, A. M., and Tour, J. M., Science 286, 1550 (1999).CrossRefGoogle Scholar
3. Tseng, G. Y. and Ellenbogen, J. C., Science 294, 1293 (2001).CrossRefGoogle Scholar
4. Joachim, C., Nanotechnology 13, R1 (2002).CrossRefGoogle Scholar
5. Matsunaga, N. and Sohlberg, K., Journal of Nanoscience and Nanotechnology 1 (3), 275 (2001).Google Scholar
6. Gonzales, C. and Morales, R. G. E., Chemical Physics 250, 279 (1999).Google Scholar
7. Esaki, L., presented at the Nobel Lectures, Stockholm, Sweden, 1973.Google Scholar
8. Leatherman, G., Durantini, E. N., Gust, D., Moore, T. A., Moore, A. L., Stone, S., Zhou, Z., Rez, P., Liu, Y. Z. and Lindsay, S. M., Journal of Physical Chemistry B 103, 4006 (1999).CrossRefGoogle Scholar
9. Davis, W. B., Svec, W. A., Ratner, M. A. and Wasielewski, M. R., Nature 396, 60 (1998).CrossRefGoogle Scholar
10. Vilan, A. and Cahen, D., Trends in Biotechnology 20, 22 (2002).CrossRefGoogle Scholar
11. Hammett, L. P., Physical Organic Chemistry: Reaction Rates, Equilibria and Mechanisms, (McGraw-Hill, New York, 1940).Google Scholar
12. Carey, F. A. and Sundberg, R. J., Advanced Organic Chemistry: Part A-Structure and Mechanisms, 3rd ed. (Plenum Press, New York, 1990).Google Scholar
13. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., and Montgomery, J. A., Journal of Computational Chemistry 14, 1347 (1993).CrossRefGoogle Scholar
14. Szabo, A. and Ostlund, N. S., Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. (Dover, Mineola, N.Y., 1996).Google Scholar