Published online by Cambridge University Press: 26 July 2012
Stress relaxation in polycrystalline layers can be explained by processes, in which the microstructure plays a dominant role. The microstructure itself may also be subjected to changes. With X-ray diffraction information about both the stress and the microstructure can be obtained without destroying the specimen and without disturbing the stress relaxation process.
In this paper a model system is studied: Au on Si<100>. The specimens showed a simultaneous decrease of macrostress and dislocation density with time at room temperature. This could be interpreted on the basis of a model founded on thermally activated dislocation motion. It followed that the grain size is an important parameter for the change of the dislocation density.