No CrossRef data available.
Published online by Cambridge University Press: 03 September 2012
High quality Al0.25Ga0.75N/GaN modulation-doped heterojunction field-effect transistor (MOD-HFET) structures grown on sapphire substrates with high sheet carrier density and mobility products (nsμ > 1016/Vs at room temperature) have been grown by metal organic chemical vapor deposition (MOCVD). The optimized structures were achieved by varying structural parameters, including the AlGaN spacer layer thickness, the Si-doped AlGaN barrier layer thickness, the Si-doping concentration, and the growth pressure. In these structures, the persistent photoconductivity (PPC) effect associated with the two-dimensional electron gas (2DEG) system was invariantly observed. As a consequence, the characteristic parameters of the 2DEG were sensitive to light and the sensitivity was associated with permanent photoinduced increases in the 2DEG carrier mobility (μ) and sheet carrier density (ns). However, we observed that the magnitude of the PPC and hence the photoinduced instability associated with these heterostructures were a strong function of only one parameter, the product of ns and μ, which is the most important parameter for the HFET device design. For a fixed excitation photon dose, the ratio of the low temperature PPC to the dark conductivity level was observed to decrease from 200% to 3% as the nsμ (300 K) product was increased from 0.048 × 1016/Vs to 1.4 ‘times; 1016/Vs. Based on our studies, we suggest that the magnitude of the low temperature PPC can be used as a sensitive probe for monitoring the electronic quality of the AlGaN/GaN HFET structures.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.