Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:28:37.989Z Has data issue: false hasContentIssue false

Correlation Between Freeze-In Temperature of Defect Density and Hydrogen Concentration in a-Si:H

Published online by Cambridge University Press:  21 February 2011

X. Xu
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
M. Isomura
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
J. H. Yoon
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
J. R. Abelson
Affiliation:
Department of Materials Science and Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

We measured the freeze-in temperature of the dangling-bond density in a-Si:H in nine samples with hydrogen concentrations ranging from 7.0 to 31 at.%. The measurements were made by determining the defect density of samples quenched from successively higher temperature. We determined the defect densities with the constant photoconductivity method. The freeze-in temperature is 211±10 °C, and is independent of hydrogen concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1) Smith, Z E. and Wagner, S., Phys. Rev. B 32, 5510 (1985).Google Scholar
2) McMahon, T.J. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987).Google Scholar
3) Street, R. A., “Hydrogenated Amorphous Silicon”, Chapter 6. Cambridge University Press, to be published.Google Scholar
4) Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
5) Street, R. A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
6) Kakalios, J. and Jackson, W., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1989), p. 207. Google Scholar
7) Matsuo, S., Nasu, H., Akamatsu, C., Hayashi, R.,, Imura, T. and Osaka, Y., Jpn. J. Appl. Phys. 27, L 132 (1988).Google Scholar
8) Pinarbasi, M., Abelson, J. R. and Kushner, M. J., Appl. Phys. Lett. 56, 1685 (1990).Google Scholar
9) Park, H. R., Liu, J. Z. and Wagner, S., Appl. Phys. Lett. 55, 2658 (1989).Google Scholar
10) Pinarbasi, M., Maley, N., Myers, N. A., Abelson, J. R., Thin Solid Films, 171, 217 (1989).CrossRefGoogle Scholar
11) Smith, Z E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzey, J., Wagner, S. and Chu, T. L., Appl. Phys. Lett. 50, 1521 (1987).Google Scholar
12) Smith, Z E. and Wagner, S., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1989), p. 409.CrossRefGoogle Scholar
13) Xu, X., Sasaki, H., Morimoto, A., Kumeda, M., and Shimizu, T., Phys. Rev. B 41, 10049 (1990).CrossRefGoogle Scholar
14) Zafar, S. and Schiff, E. A., Phys. Rev. B 40, 5235 (1989).CrossRefGoogle Scholar
15) Hata, N., Larson, E., Liu, J. Z., Okada, Y., Park, H. R., and Wagner, S., in Proceedings of Materials Research Society, Vol.192, p. 285 (1990).CrossRefGoogle Scholar
16) Phillips, J. C., Phys. Rev. Lett. 42, 1151 (1979).CrossRefGoogle Scholar