Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:29:24.315Z Has data issue: false hasContentIssue false

Controlling (In,Ga)As quantum structures on high index GaAs surfaces

Published online by Cambridge University Press:  01 February 2011

Sh. Seydmohamadi
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, U. S. A.
H. Wen
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, U. S. A.
Zh. M. Wang
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, U. S. A.
G. J. Salamo
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, Arkansas, 72701, U. S. A.
Get access

Abstract

We investigate the formation of (In, Ga) As self assembled quantum structures grown on different orientations of a GaAs substrate along one side of the stereographic triangle between (100) and (111)A surfaces. The samples were grown by Molecular Beam Epitaxy, monitored by Reflection High-Energy Electron Diffraction during the growth and characterized by in-situ Scanning Tunneling Microscopy and Atomic Force Microscopy. A systematic transition from zero dimensional (In, Ga) As quantum dots to one dimensional quantum wires was observed as the substrate was varied along the side of the triangle within 25° miscut from the (100) toward (111)A, which includes several high index surfaces. We propose an explanation for the role of the substrate in determining the type of the nanostructure that is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wang, Z. M., Wen, H., Yazdanpanah, V. R., Shultz, J. L. and Salamo, G. J., Appl. Phys. Lett. 82, 1688 (2003)Google Scholar
[2] Platen., J., Kley., A., Setzer., C., Jacobi., K., Ruggerone., P., and Scheffler., M., J. Appl. Phys. 85, 3597 (1998)Google Scholar
[3] Evtikhiev, V.P., Boiko, A.M., Kudryashov, I.V., Kryganovskii, A.K., Suris, R.A., Titkov, A.N., Tokranov, V.E., Semiconductor Sci. Technol. 17, 545 (2002)Google Scholar
[4] Jiang., W., Xu., H., Xu, B, Zhou., W., Gong., Q., Ding., D., Liang, J. and Wang, Z. G., J. Vac. Sci. Technol. B 19(1), 197 (2001)Google Scholar
[5] Lubyshev, D. I., Gonzalez-Borrero, P. P., Marega, E. Jr, Petitprez, E. and Basmaji., P., J. Vac. Sci. Technol. B 14(3), 2212 (1996)Google Scholar
[6] Nitta., T., Ohno., Y., Shimomura., S., and Hiyamizu., S., J. Vac. Sci. Technol. B, 19, 1824 (2001)Google Scholar
[7] Wang, X. Y., Wang, Zh. M., Yazdanpanah, V. R., Salamo, G. J. and Xiao., M., J. Appl. Phys. 95, 1609 (2004)Google Scholar
[8] Wang, Z. M., Yazdanpanah, V. R., Shultz, J. L., and Salamo, G. J., Appl. Phys. Lett. 81, 2965 (2002)Google Scholar
[9] Wen., H., Wang, Z. M., Salamo, G. J., Appl. Phys. Lett. 84, 1756 (2004)Google Scholar
[10] Wassermeier., M., Sudijono., J., Johnson, M. D., Leung, K. T., Orr, B. G., Daweritz, L. and Ploog, K., Phys. Rev. B 51, 14721 (1995)Google Scholar
[11] Yamada., T., Yamaguchi, H. and Horikoshi., Y., J. Crystal Growth 150, 421 (1995)Google Scholar
[12] Márquez, J., Kratzer., P., Geelhaar., L., Jacobi, K. and Scheffler., M., Phys. Rev. Lett. 86, 115 (2001)Google Scholar
[13] Geelhaar., L., Márquez, J., Kratzer., P., Jacobi., K., Phys. Rev. Lett. 86, 3815 (2001)Google Scholar
[14] Seydmohamadi., Sh., Wang, Zh. M. and Salamo, G. J., J. Cryst. Growth 269, 257 (2004)Google Scholar