Published online by Cambridge University Press: 01 February 2011
Gallium oxide (Ga2O3) and indium oxide (In2O3) nanostructures were synthesized by chemical vapor deposition (CVD). Ga2O3 nanowires were synthesized using Ga/Ga2O3 mixture and O2. The diameter of the nanowires is 30–80 nm with an average value of 50 nm. They are consisted of single-crystalline monoclinic crystal. While the nanowires grown without catalyst exhibit a significant planar defect, the nanowires grown with nickel catalytic nanoparticles are almost defect-free. The growth direction of the nanowires grown without the catalyst is uniformly [010]. In contrast, the nanowires grown with the catalyst have random growth direction. X-ray diffraction, Raman spectroscopy, and photoluminescence are well correlated with the structural characteristics of the nanowires. The result provides an evidence for the catalyst effect in controlling the structure of nanowires. In2O3 nanostructures were also synthesized in a controlled manner by selecting the catalyst. The reactants were In and In/In2O3 mixture. The nanowires were produced using catalytic Au nanoparticles and Ga. But the unique bifurcated-structure nanobelts were instead grown without Ga. The nanowires have uniform [100] growth direction with rectangular cross-section. We converted the In2O3 nanowires to In2O3-Ga2O3 nanostructures.