Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:39:01.175Z Has data issue: false hasContentIssue false

Controlled Carbon Nanotube Networks and its Corresponding Channel Effect at High Bias

Published online by Cambridge University Press:  01 February 2011

Jun Huang
Affiliation:
huangking1@gmail.com, Florida International University, Mechanical and Materials Engineering, 10555 West Flagler Street, Miami, FL, 33174, United States, 3053481343, 3053481932
Bangalore Kiran Rao
Affiliation:
rao_fiu@yahoo.com, Florida International University, Mechanical and Materials Engineering, 10555 West Flagler Street, Miami, FL, 33174, United States
Harindra Vedala
Affiliation:
hveda002@fiu.edu, Florida International University, Mechanical and Materials Engineering, 10555 West Flagler Street, Miami, FL, 33174, United States
Do-Hyun Kim
Affiliation:
dhkim@fiu.edu, Florida International University, Mechanical and Materials Engineering, 10555 West Flagler Street, Miami, FL, 33174, United States
Minhyon Jeon
Affiliation:
mj4073@paran.com, Inje University, School of Nanoengineering, Gimhae, 621749, Korea, Republic of
Wanjun Park
Affiliation:
wanjun@samsung.com, SAMSUNG SAIT, Samsung Advanced Institute of Technology, Gihueng-Eup Young-Si Gyeonggi-Do, Gyeonggi, 449-712, Korea, Republic of
Wonbong Choi
Affiliation:
choiw@fiu.edu, Florida International University, Mechanical and Materials Engineering, 10555 West Flagler Street, Miami, FL, 33174, United States
Get access

Abstract

Geometrically controlled single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) networks were fabricated by a width confinement technique to characterize their electrical characteristics. The results demonstrated non-linear resistance decay with the number of conducting channels. The current-voltage characteristics at high field were studied until the electrical breakdown took place. Large current (∼2 mA), low resistance (∼5 KΩ) and current densities exceeding ∼108 A/cm2 were demonstrated from multi-channel MWNT networks confined in a 10 μm × 15 μm trench. Additionally, chronological SEM imaging was used to identify the breakdown sequences in the carbon nanotube networks, which revealed a strong tendency for CNT breakdown to occur in the vicinity of CNT-CNT intersections. Our results offer insights for interconnect applications using CNT networks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snow, E. S., Novak, J. P., Campbell, P. M. et al., Appl. Phys. Lett. 82, 2145 (2003).Google Scholar
2. Stadermann, M., Papadakis, S. J., Falvo, M. R. et al., Phys. Rev. B 69 (2004).Google Scholar
3. Naeemi, A. and Meindl, J. D., IEEE Electron Dev. Lett. 26, 476 (2005).Google Scholar
4. Naeemi, A. and Meindl, J. D., IEEE Electron Dev. Lett. 26, 544 (2005).Google Scholar
5. Naeemi, A., Sarvari, R., and Meindl, J. D., IEEE Electron Dev. Lett. 26, 84 (2005).Google Scholar
6. Kim, P., Shi, L., Majumdar, A. et al., Phys. Rev. Lett. 87, 215502 (2001).Google Scholar
7. Collins, P. G., Hersam, M., Arnold, M. et al., Phys. Rev. Lett. 86, 3128 (2001).Google Scholar
8. Srivastava, N., Joshi, R. V., and Banerjee, K., IEEE International Electron Devices Meeting (IEDM), 257 (2005).Google Scholar
9. Kumar, S., Murthy, J. Y., and Alam, M. A., Phys. Rev. Lett. 95, 066802 (2005).Google Scholar
10. Bachtold, A., Fuhrer, M. S., Plyasunov, S. et al., Phys. Rev. Lett. 84, 6082 (2000).Google Scholar
11. Hu, L., Hecht, D. S., and Gruner, G., Nano Lett. 4, 2513 (2004).Google Scholar
12. Kim, D. H., Huang, J., Shin, H. K., Roy, S., Choi, W. B., Nano Lett. 6, 2821 (2006).Google Scholar
13. Raychowdhury, A. and Roy, K., Proc. of Int. Conf. on Comp Design 4, 237 (2004).Google Scholar
14. Javey, A., Guo, J., Wang, Q. et al., Nature 424, 654657 (2003).Google Scholar
15. Berger, C., Yi, Y., Wang, Z.L. et al., Appl. Phys. A 74, 363 (2002).Google Scholar
16. Huang, J. Y., Chen, S., Jo, S. H. et al., Phys. Rev. Lett. 94, 236802 (2005).Google Scholar
17. Yao, Z., Kane, C. L., and Dekker, C., Phys. Rev. Lett. 84, 2941 (2000).Google Scholar
18. Javey, A., Guo, J., Paulsson, M. et al., Phys. Rev. Lett. 92, 106804 (2004).Google Scholar
19. Minot, E. D., Yaish, Y., Sazonova, V. et al., Phys. Rev. Lett. 90, 156401156404 (2003).Google Scholar
20. Fuhrer, M. S., Nygard, J., Shih, L. et al., Science 288, 494 (2000).Google Scholar
21. Collins, P. G., Arnold, M. S., and Avouris, P., Science 292, 706 (2001).Google Scholar