Published online by Cambridge University Press: 31 January 2011
We have demonstrated conformal deposition of amorphous GeSbTe films in high aspect ratio structures by MOCVD. SEM analysis showed the as-deposited GeSbTe films had smooth morphologies and were well controlled for void free amorphous conformal deposition. GeSbTe films adhere well to SiO2, TiN, and TiAlN. The morphology and adhesion are stable in 420°C post process. By annealing at 365°C, amorphous GeSbTe films converted into crystalline GeSbTe with polycrystalline grain sizes of 5nm. Film resistivity in the crystalline phase ranged from 0.001 to 0.1 Ω-cm, suitable for device applications. Phase change devices fabricated with confined via structures filled with MOCVD GeSbTe showed cycle endurances up to 1×1010 with a dynamic set/rest resistance of two orders of magnitude.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.