Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:28:03.864Z Has data issue: false hasContentIssue false

Conductance Imaging of the Depletion Region of Biased Silicon PN Junction Device

Published online by Cambridge University Press:  21 March 2011

Jeong Young Park
Affiliation:
Department of Physics, University of Maryland College Park, Maryland 20742 Laboratory for Physical Sciences, College Park, Maryland 20740
R. J. Phaneuf
Affiliation:
Department of Materials Science and Engineering, University of Maryland College Park, Maryland 20742 Laboratory for Physical Sciences, College Park, Maryland 20740
E. D. Williams
Affiliation:
Department of Physics, University of Maryland College Park, Maryland 20742 Laboratory for Physical Sciences, College Park, Maryland 20740
Get access

Abstract

Simultaneous conductance imaging and constant current mode STM imaging have been used to delineate Si pn junction arrays over a range of reverse bias conditions. Conductance has been obtained by adding a modulation signal to voltages applied in the p and n regions of a model device, and by measuring the modulation signal of the tunneling current with a lock-in amplifier. Both constant current and conductance imaging ofthe electrically different regions (n, p, and depletion zone) show a pronounced dependence on applied pn junction bias. The conductance contrast is mainly due to electrically different behaviors of metal-gap-semiconductor junction which are determined by the tip-induced band bending of the oxide-passivated silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hildner, M. L., Phaneuf, R. J., and Williams, E. D., Appl. Phys. Lett. 72, 3314 (1998).Google Scholar
2. Yu, E. T., Barmak, K., Ronsheim, P., Johnson, M. B., McFarland, P., and Halbout, J.-M., J. Appl. Phys. 79, 2115 (1996).Google Scholar
3. Richter, S., Geva, M., Garno, J. P., Kleiman, R. N., Appl. Phys. Lett. 77, 456 (2000).Google Scholar
4. LaBrasca, J. V., Chapman, R. C., McGuire, G. E., Nemanich, R. J., J. Vac. Sci. Technol. B9, 752(1991).Google Scholar
5. Kordić, S., Leonen, E. J. Van, and Walker, A. J., Appl. Phys. Lett. 59, 3154 (1991).Google Scholar
6. Chao, K.-J., Smith, A. R., McDonald, A. J., Kwong, D.-L., Streetman, B. G., Shih, C.-K., J. Vac. Sci. Technol. B16, 453 (1998)Google Scholar
7. Hosaka, S., Hosoki, S., Takata, K.. Horiuchi, K., and Natsuaki, N., Appl. Phys. Lett. 53, 487 (1988).Google Scholar
8. Stroscio, J. A., Feenstra, R. M., and Fein, A. P., Phys. Rev. Lett. 57, 2579 (1986).Google Scholar
9. Bell, L. D., Kaiser, W. J., Hecht, M. H., and Grunthaner, F. J., Appl. Phys. Lett. 52, 278 (1988).Google Scholar
10. Jahanmir, J., West, P. E., Young, A., and Rhodin, T. N., J. Vac. Sci. Technol. A7, 2741 (1989).Google Scholar
11. Phaneuf, R. J., Kan, H.-C., Marsi, M., Gregoratti, L., Günther, S., and Kiskinova, M., J. Appl. Phys. 88, 863 (2000).Google Scholar
12. Giesen, M., Phaneuf, R. J., Williams, E. D., Einstein, T. L., and Ibach, H., Appl. Phys. A:Mater. Sci. Process. 64, 423 (1997).Google Scholar
13. Ishizaka, A., and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
14. Suganuma, Y., and Tomitori, M., Jpn. J. Appl. Phys. 37, 3789 (1998).Google Scholar
15. Everson, M. P., Jaklevic, R. C., and Shen, W., J. Vac. Sci. Technol. A8, 3662 (1990).Google Scholar
16. Park, J. Y., Phaneuf, R. J., and Williams, E. D. (to be published).Google Scholar