Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T14:52:11.576Z Has data issue: false hasContentIssue false

The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations

Published online by Cambridge University Press:  26 February 2011

Markus J. Buehler
Affiliation:
mbuehler@MIT.EDU, Massachusetts Institute of Technology, CEE, 77 Mass. Ave Room 1-272, Cambridge, MA, 02139, United States, 626 628 4087, 617 258-6775
Jef Dodson
Affiliation:
jef@caltech.edu
Adri C.T. van Duin
Affiliation:
duin@wag.caltech.edu
William A. Goddard III
Affiliation:
wag@wag.caltech.edu
Get access

Abstract

Predicting the properties and behavior of materials by computer simulation from a fundamental, ab initio perspective has long been a vision of computational material scientists. The key to achieving this goal is utilizing hierarchies of paradigms and scales that connect macrosystems to first principles quantum mechanics (QM). Here we describe a new software environment, the “Computational Materials Design Facility” (CMDF), capable of simulations of complex materials studies using a variety of simulation paradigms. The CMDF utilizes a Python scripting layer to integrate different computational tools to develop multi-scale simulation applications. We have integrated DFT QM methods, the first principles ReaxFF reactive force field, empirical all atom force fields (FFs), mesoscale and continuum methods. The central data structure Extended OpenBabel (XOB) plays a critical role as glue between applications. We demonstrate the usefulness of CMDF in examples that couple complex chemistry and mechanical properties during dynamical failure processes, as for example in a study of cracking of Ni under presence of O2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Springborg, M., Density-functional methods in chemistry and materials science, Wiley research series in Theoretical Chemistry, 1997.Google Scholar
[2] Duin, A. C. T. v., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105 (2001) 93969409.Google Scholar
[3] Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., Journal Of Physics-Condensed Matter 14 (2002) 783802.Google Scholar
[4] Stuart, S. J., Tutein, A. B., Harrison, J. A., Journal Of Chemical Physics 112 (2000) 64726486.Google Scholar
[5] Buehler, M. J., Duin, A. C. T. v., Goddard, W. A., Phys. Rev. Lett., in press.Google Scholar
[6] Liu, W. K., Karpov, E. G., Zhang, S., Park, H. S., Computer Methods in Applied Mechanics and Engineering 193 (2004) 15291578.Google Scholar
[7] Li, X. T., Weinan, E., Journal Of The Mechanics And Physics Of Solids 53 (2005) 16501685.Google Scholar
[8] Curtin, W. E., Miller, R. E., Model. Sim. Mat. Science and Engr. 11 (2003) R33–E68.Google Scholar
[9] Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. D. d. L., Seager, M., P. Natl. Acad. Sci. USA 99 (2002) 57885792.Google Scholar
[10] Buehler, M. J., Gao, H., Nature 439 (2006) 307310.Google Scholar
[11] Norskov, J. K., Schiotz, J., Jacobsen, K. W..Google Scholar
[12] Zhou, S. J., Beazly, D. M., Lomdahl, P. S., Holian, B. L., Phys. Rev. Lett. 78 (1997) 479482.Google Scholar
[13] Hauch, J. A., Holland, D., Marder, M., Swinney, H. L., Future Generation Computer Systems 19 (2003) 599609.Google Scholar
[14] Parker, S. G., Johnson, C. R., Beazley, D., IEEE Computational Science and Engineering 4 (1997) 50599.Google Scholar
[15] Strachan, A., van Duin, A. C. T., Chakraborty, D., Dasgupta, S., Goddard, W. A., Physical Review Letters 91 (2003).Google Scholar
[16] van Duin, A. C. T., Nielson, K., Deng, W. Q., Oxgaard, J., Goddard, W. A., Abstracts Of Papers Of The American Chemical Society 227 (2004) U1031–U1031.Google Scholar