Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:41:40.075Z Has data issue: false hasContentIssue false

Computational and Experimental investigation of Nalipoite-Li2APO4 (A = Na, K) electrolytes for Li-ion batteries

Published online by Cambridge University Press:  17 March 2015

G. F. Ortiz
Affiliation:
Inorganic Chemistry Laboratory, University of Córdoba, Campus of Rabanales, Marie Curie Building, Cordoba E-14071, Spain
M C. López
Affiliation:
Inorganic Chemistry Laboratory, University of Córdoba, Campus of Rabanales, Marie Curie Building, Cordoba E-14071, Spain
M.E. Arroyo-de Dompablo
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
José L. Tirado
Affiliation:
Inorganic Chemistry Laboratory, University of Córdoba, Campus of Rabanales, Marie Curie Building, Cordoba E-14071, Spain
Get access

Abstract

The potential ionic conductors Li2APO4 (A = Na, K) are investigated combining experiments and first principles calculations at the Density Functional Theory level. A high ionic conductivity of 6.5 x10−6 and 1.5 x10−5 S cm−1 at 25 and 70°C, respectively, is found in Nalipoite-Li2NaPO4. For this mixed phosphate the energy barriers to Li motion are calculated. The lower energy barrier (0.7 eV) implies the inter-chain diffusion of Li in the b-c plane. We predict that ionic mobility is enhanced in the isostructural Li2KPO4, with the lowest calculated energy barrier being 0.4 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Thangadurai, V., Weppner, W., Ionics, 8, 281 (2002).Google Scholar
Wang, B., Chakoumakos, B.C., Sales, B. C., Kwak, B. S. and Bates, J.B., J. Solid State Chem. 115, 313 (1995).CrossRefGoogle Scholar
Liu, H.C. and Yen, S.K., J. Power Sources 159, 245 (2006).CrossRefGoogle Scholar
Chao, G.Y. and Ercit, T.S., Can. Mineral. 29, 565 (1991).Google Scholar
Ercit, T.S, Can. Mineral. 29, 569 (1991).Google Scholar
López, M.C., Órtiz, G., Arroyo-de Dompablo, M.E., Tirado, J.L., Inorg. Chem. 53, 2310 (2014).CrossRefGoogle Scholar
Xie, H., Goodenough, J.B. and Li, Y., Y. J. Power Sources 196, 7760 (2011).CrossRefGoogle Scholar
Matsui, N. Solid State Ionics 57, 121 (1992).CrossRefGoogle Scholar
Kresse, G. and J.Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J Comput. Mater. Sci. 15, 6 (1996).Google Scholar
Yu, X., Bates, J.B., Jellison, G.E. Jr. and Hart, F.X.. J. Electrochem. Soc. 144, 524 (1997).CrossRefGoogle Scholar
Zhang, S. Q., Xie, S., and Chen, C.H. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 121, (2005).CrossRefGoogle Scholar
Murugan, R., Thangadurai, V., Weppner, W.,. Angew. Chem. Int. Edit. 46, 7778 (2007).CrossRefGoogle Scholar
Thangadurai, V., Weppner, W. Ionics, 8, 281 (2002).CrossRefGoogle Scholar
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., Adachi, G., J. Electrochem. Soc., 137, 1023 (1990)CrossRefGoogle Scholar
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. and Adachi, G.Y. Solid State lonics 47, 257 (1991).CrossRefGoogle Scholar
Du, Y. A., Holzwarth, N.A.W., Physical Review 76, 174302 (2007).CrossRefGoogle Scholar