Published online by Cambridge University Press: 21 March 2011
In this work, the time evolution of B transient enhanced diffusion (TED) suppression due to the incorporation of 0.018% substitutional carbon in silicon was studied. The combination of having low C concentrations, which reduce B TED without completely eliminating it, and having diffused B profiles for several times at a single temperature provides much data upon which various models for the suppression of B TED can be tested. Recent work in the literature has indicated that the suppression of B TED in C-rich Si is caused by non-equilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. Attempts to model our data with these two reactions revealed that the time evolved diffusion behavior of B was not accurately simulated and that an additional reaction that further reduces the Si self-inter- stitial concentration was necessary. In this work, we incorporate a carbon interstitial, carbon substitutional (CiCs) pairing mechanism into a comprehensive model that includes the C kick-out reaction, C Frank-Turnbull reaction, {311} defects, and boron interstitial clusters (BICs) and demonstrate that this model successfully simulates C suppression of B TED at 750 °C for anneal times ranging from 10 s to 60 min.