Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T17:42:54.579Z Has data issue: false hasContentIssue false

Compositional Dependence of the Compressive Yield Strength of Fe-Nb(-Al) and Co-Nb Laves Phases

Published online by Cambridge University Press:  10 March 2011

Simon Voß
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Martin Palm
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Frank Stein
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Get access

Abstract

Large, defect-free single-phase samples of the hexagonal C14 NbFe2 and Nb(Fe,Al)2, and the cubic C15 NbCo2 Laves phases have been produced by a modified levitation melting technique. The compressive strength of NbFe2 and NbCo2 has been determined in dependence on the Nb content, that of Nb(Fe,Al)2 in dependence on the Al content. The binary phases did not show either a maximum (defect softening) or minimum (defect hardening) in strength when the Nb content was varied. Instead, for both phases an increase of the compressive strength with increasing Nb content is observed.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, C. T., Zhu, J. H., Brady, M. P., McKamey, C. G. and Pike, L. M., Intermetallics 8, 1119 (2000).Google Scholar
2. Leitner, G., Doctoral thesis TU Dresden, Germany (1971).Google Scholar
3. Zhu, J. H., Pike, L. M., Liu, C.T. and Liaw, P. K., Acta Mater. 47, 2003 (1999).Google Scholar
4. Eichler, K., Kubsch, H., Müller, Th. and Paufler, P., Krist.Tech. 11, 1185 (1976).Google Scholar
5. Chen, K. C., Doctoral thesis Massachusetts Institute of Technology, MA, USA (1996).Google Scholar
6. Chen, K. C., Allen, S.M. and Livingston, J. D., MRS Symp. Proc. 364, 1401 (1995).Google Scholar
7. Chen, K. C., Chu, F., Kotula, P. G. and Thoma, D., Intermetallics 9, 785 (2001).Google Scholar
8. Müller, T. and Paufler, P., Phys. Status Solidi (a) 40, 471 (1977).Google Scholar
9. Takasugi, T., Hanada, S. and Yoshida, M., Mater. Sci. Eng. A l92/l93, 805 (1995).Google Scholar
10. Voß, S., Stein, F., Palm, M. and Raabe, D., Mater. Sci. Eng. A 527, 7848 (2010).Google Scholar
11. Voß, S., Stein, F., Palm, M. and Raabe, D., J. Phase Equil. Diffus. in press (2010).Google Scholar
12. Stein, F., Jiang, D., Palm, M., Sauthoff, G., Grüner, D. and Kreiner, G., Intermetallics 16, 785 (2008).Google Scholar
13. Prymak, O. and Stein, F., Intermetallics 18, 1322 (2010).Google Scholar
14. Voss, S., Stein, F., Palm, M., Grüner, D., Kreiner, G., Frommeyer, G. and Raabe, D., MRS Symp. Proc. 1128, 469 (2009).Google Scholar