Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:15:14.943Z Has data issue: false hasContentIssue false

Composite Inorganic Filler Based Electrolyte Membranes for Fuel Cells Applications

Published online by Cambridge University Press:  01 February 2011

Antonino S. Aricò
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Vincenzo Baglio
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Alessandra Di Blasi
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Vincenzo Antonucci
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Get access

Abstract

Various recast Nafion® composite membranes containing ceramic oxide fillers with different surface characteristics (SiO2, SiO2-PWA, Al2O3, ZrO2) have been investigated for application in high temperature direct methanol fuel cells (DMFCs). Cell resistance at 145 °C increases as a function of the pH of slurry of the inorganic filler indicating a strong influence of the acid-base characteristics on the electrolyte conductivity. This effect has been attributed to the different water retention capabilities of the various membranes. Fuel cell performance at 145 °C, expressed as both maximum power density and current density at 0.5 V cell potential, increases almost linearly as the pH of slurry of the oxide materials decreases. Appropriate selection of the surface properties for the inorganic fillers allows to enhance the proton conductivity and extends the operating temperature range of composite membranes. An infrared spectroscopic investigation of inorganic fillers employed in composite membranes has been carried out. The surface acidity of the fillers appears to influence the bending and stretching vibrational frequencies of the water physically adsorbed on the filler surface. Inorganic fillers characterised by acidic properties undergo a strong interaction with water and enhance the DMFC performance at high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrova, P., Friedrich, K.A., Vogt, B., Stimming, U., J. Electrochem. Soc., 532, 75 (2002)Google Scholar
2. Watanabe, M., Uchida, H., Seki, Y., Emori, M., Stonehart, P., J. Electrochem. Soc., 143, 3847 (1996)Google Scholar
3. Aricò, A. S., Cretì, P., Antonucci, P. L. and Antonucci, V., Electrochem. Solid-State Lett., 1, 6 (1998)Google Scholar
4. Staiti, P., Aricò, A.S., Baglio, V., Lufrano, F., Passalacqua, E., Antonucci, V., Solid State Ionics, 145, 101 (2001)Google Scholar
5. Jung, D. H., Cho, S. Y., Peck, D. H., Shin, D. R., Kim, J. S., J. Power Sources, 118, 205 (2003)Google Scholar
6. Yang, C., Srinivasan, S., Arico’, A. S., Cretì, P., Baglio, V. and Antonucci, V., Electrochem. and Solid-State Lett., 4, A31 (2001)Google Scholar
7. Miyake, N., Wainright, J. S., Savinell, R.F., J. Electrochem. Soc., 148, A905 (2001)Google Scholar
8. Libby, B., Smyrl, W.H., Cussler, E.L., Electrochem. Solid State Lett., 4, A197 (2001)Google Scholar
9. Iler, R. K. “The Chemistry of Silica”, Wiley-Interscience, John Wiley and Sons, New York, 1979, pp 622710 Google Scholar
10. Baglio, V., Di Blasi, A., Aricò, A.S., Antonucci, V., Antonucci, P.L., Serraino Fiory, F., Licoccia, S., Traversa, E., Mat. Res. Soc. Symp. Proc. Vol. 756, 2003, pp. 345350 Google Scholar
11. Arico', A. S., Baglio, V., Di Blasi, A., Creti', P., Antonucci, P. L., Antonucci, V., Solid State Ionics, 161, 251 (2003)Google Scholar
12. Traversa, E., Di Vona, M.L., Licoccia, S., Sacerdoti, M., Carotta, M.C., Crema, L., Martinelli, G., J. Sol-Gel Sci. Technol., 22, 167 (2001)Google Scholar
13. Aricò, A. S., Antonucci, V., Minutoli, M., Giordano, N., Carbon, 27, 337 (1989)Google Scholar
14. Giordano, N., Staiti, P., Hocevar, S., Aricò, A.S., Electrochim. Acta, 41, 397 (1996)Google Scholar
15. Tatsumisago, M., Minami, T., J. Am. Cer. Soc., 72, 484 (1989)Google Scholar
16. Vikulov, K., Martra, G., Coluccia, S., Miceli, D., Arena, F., Parmaliana, A., Paukshtis, E., Catal. Lett., 37, 235 (1996)Google Scholar
17. Chen, N., Yang, R. T., J. Catal., 157, 76 (1995)Google Scholar
18. Boehm, H.P., Adv. Catal., 16, 226 (1966)Google Scholar
19. Scherer, J. R. “The vibrational spectroscopy of water” in “Advances in Infrared and Raman Spectroscopy” Vol. 5 Edited by Clark, R.J.H. and Hester, R. E., Heyden & Son Ltd London 1980, p. 149.Google Scholar
20. Kreuer, K. D., Solid State Ionics, 97, 1 (1997)Google Scholar