Published online by Cambridge University Press: 22 February 2011
The chemistry of coadsorbed H and X (X=C1, Br) on semiconductor surfaces is important in epitaxial growth of silicon from chlorosilanes and of SixGe1−x alloys, in hydrogenating/ halogenating cycles in atomic layer epitaxy, and also provides an interesting model system, yet has received little attention to date. We have investigated the interaction of HC1 and HBr with Ge(100) by temperature-programmed desorption, and find that H2, HCl and HBr each desorb with near-first-order kinetics near 570–590 K and that GeCl2 and GeBr2 desorb with near-second-order kinetics near 675 K and 710 K, respectively. Analysis of the desorption kinetics of H2 and HX provides evidence that adsorbed H and X atoms pair preferentially in a qualitatively similar way as H atoms adsorbed alone on Ge(100)2×1 or Si(100)2×1 and that pairing of H+X occurs in competition with pairing of H+H.