Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T19:03:59.580Z Has data issue: false hasContentIssue false

Comparison of ZnS-based Buffer Layers by Chemical Bath Deposition and Atomic Layer Deposition

Published online by Cambridge University Press:  31 January 2011

Charlotte Platzer-Bjöerkman
Affiliation:
charlotte.platzer@angstrom.uu.se, Uppsala University, Solid State Electronics, Uppsala, Sweden
Alexander Uhl
Affiliation:
Alexander.Uhl@physik.uni-wuerzburg.de, Uppsala University, Solid State Electronics, Uppsala, Sweden
Get access

Abstract

In this work we compare ZnS-based buffer layers prepared by atomic layer deposition, ALD, and chemical bath deposition, CBD. Both material and device properties are compared. CBD buffer layers are amorphous with a Zn(OH,S) composition while ALD buffer layers used in devices are crystalline with a Zn(O,OH,S) composition. Devices with ALD buffer layers are stable while for CBD, large lightsoaking effects are seen. Stable devices with CBD buffer layers are obtained by including an ALD-(Zn,Mg)O layer on top of the CBD layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Platzer-Björkman, C., Törndahl, T., Abou-Ras, D., Malmström, J., Kessler, J. and Stolt, L. J Appl Phys, 2006; 100: 044506.Google Scholar
2. Persson, C., Platzer-Björkman, C., Malmström, J., Törndahl, T., and Edoff, M. Phys. Rev. Lett, 2006; 97: 146403.Google Scholar
3. Ennaoui, A., Bär, M., Klaer, J. Kropp, T. Saez-Araoz, R., and Lux-Steiner, M., Prog PV: Res Appl, 2006; 14: 499.Google Scholar
4. Hubert, C., Naghavi, N. Canava, B. Etcheberry, A. and Lincot, D.. Proc IEEE 4th world conf on photovoltaic energy conversion. Hawaii, USA 2006 Google Scholar
5. Kushiya, K., Solar Energy, 2004; 77: 717.Google Scholar
6. Nakada, T., Jpn. J. Appl. Phys., 2002; 41: L165-L167.Google Scholar
7. Uhl, A., MSc Thesis, 2009, Uppsala University.Google Scholar
8. Zimmermann, U., Ruth, M. and Edoff, M.. Proc 21st EPVSEC. Dresden, Germany 2006; 1831.Google Scholar
9. Kessler, J., Bodegård, M., Hedström, J., and Stolt, L. Sol En Mat & Solar Cells, 2001; 67: 6776.Google Scholar
10. Edoff, M., Woldegiorgis, S. Neretnieks, P. Ruth, M. Kessler, J. and Stolt, L.. Proceedings of the 19th European Photovoltaic Solar Energy Conference. Paris 2004; 16901693.Google Scholar
11. Briggs, D. and Seah, M.P. Practical surface analysis. 2 ed. Vol. 1. 1990, Guildford: John Wiley & Sons Google Scholar
12. Moulder, J., Stickle, W. Sobol, P. and Bomben, K. Handbook of X-ray Photoelectron Spectroscopy. 1995, Chanhassen, MN: Physical Electronics Inc. Google Scholar
13. Dake, L., Baer, D. and Zachara, J. Surface and Interface analysis, 1989; 14: 71.Google Scholar
14. Terada, N., Kashiwabara, H. Teshima, S. Okuda, T. Obara, K. Yagioka, T. and Nakada, T.. Proceedings of the 17th Photovoltaic Solar Energy Conference. Fukuoka, Japan 2007 Google Scholar
15. Bär, M., Ennaoui, A. Klaer, J. Kropp, T. Saez-Araoz, R., Allsop, N. Lauermann, I. Schock, H.W. and Lux-Steiner, M., Journal of Applied Physics, 2006; 99: 123503.Google Scholar
16. Sanders, B. and Kitai, A. Chem. Mater., 1992; 4: 10051011.Google Scholar
17. Yousfi, E., Asikainen, T. Pietu, V. Cowache, P. Powalla, M. and Lincot, D. T SF, 2000; 361-362: 183 Google Scholar
18. Takabayashi, A. and Iida, S. Jap J Appl Phys, 1986; 25(6): L437–L439.Google Scholar
19. Hariskos, D., Fuchs, B. Menner, R. Powalla, M. Naghavi, N. and Lincot, D.. Proc 22nd European Photovoltaic Solar Energy Conference. Milan 2007; 19071910.Google Scholar