Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:18:04.379Z Has data issue: false hasContentIssue false

Comparison Between Chemical and Plasmatic Treatment of Seeding Layer for Patterned Diamond Growth

Published online by Cambridge University Press:  31 January 2011

Alexander Kromka
Affiliation:
kromka@fzu.cz, Institute of physics, Prague, Czech Republic
Oleg Babchenko
Affiliation:
babchenko@fzu.cz, Institute of physics, Prague, Czech Republic
Bohuslav Rezek
Affiliation:
rezek@fzu.cz, Institute of physics, Prague, Czech Republic
Karel Hruska
Affiliation:
hruskak@fzu.cz, Institute of physics, Prague, Czech Republic
Adam Purkrt
Affiliation:
purkrt@fzu.cz, Institute of physics, Prague, Czech Republic
Zdenek Remes
Affiliation:
remes@fzu.cz
Get access

Abstract

We employ UV photolithographic and electron beam lithographic patterning of diamond seeding layer on SiO2/Si substrates for the selective growth of micrometer and sub-micrometer diamond patterns. Using bottom-up strategy, thin diamond channels (470 nm in width) are directly grown. Differences between wet chemical and plasma treatment on the patterned diamond growth are studied. We find that the density of parasitic diamond crystals (outside predefined patterns) is lowered for gas mixture CF4/O2 plasma than for rich O2 plasma. After CF4/O2 plasma treatment, the density of parasitic crystals is 106 cm-2 which is comparable to the wet chemical treatment. Introducing sandwich-like structure, i.e. photoresist-seeding layer-photoresist, and its treatment (lift-off and CF4/O2 plasma) further reduces the density of parasitic crystals down to 105 cm-2. The advantage of this novel treatment is short processing time, simplicity, and minimal damage of the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fu, Y., Du, H., Miao, J., Jour. Mat. Proc. Technol. 132, 73 (2003).Google Scholar
2 Bongrain, A., Scorsone, E., Rousseau, L., Lissorgues, G., Gesset, C., Saada, S. and Bergonzo, P., J. Micromech. Microeng., 19, 074015 (2009).Google Scholar
3 Ding, G.F., Mao, H.P., Cai, Y.L., Zhang, Y.H., Yao, X., Zhao, X.L.: Diam. Relat. Mater. 14, 1543 (2005)Google Scholar
4 Hiscocks, M.P., Kaalund, C.J., Ladouceur, F., Huntington, S.T., Gibson, B.C., Trpkovski, S., Simpson, D., Ampem-Lassen, E., Prawer, S., Butler, J.E.: Diam. Relat. Mater., 17, 1831 (2008).Google Scholar
5 Zou, Y. S., Yang, Y., Zhang, W. J., Chong, Y. M., He, B., Bello, I., Lee, S. T., App. Phys. Lett. 92, 053105 (2008).Google Scholar
6 Gamo, H., Shimada, K., Nishitani-Gamo, M., Ando, T.: Jpn. J. Appl. Phys. 46, 6267 (2007).Google Scholar
7 Fox, N.A., Youh, M.J., Steeds, J.W., Wang, W.N., J. Appl. Phys. 87, 8187 (2000).Google Scholar
8 Chen, Y.-H., Hu, C.-T., Lin, I-N.: Jap. Jour. Appl. Phys 36, 6900 (1997).Google Scholar
9 Sakamoto, Y., Takaya, M., Sugimura, H., Takai, O., Nakagiri, N.: Thin Solid Films, 334, 161 (1998).Google Scholar
10 Massod, A., Aslam, M., Tamor, M.A., Potter, T.J., J. Electrochem. Soc. 138, L67 (1991).Google Scholar
11 Geis, M.W., Twichell, J.C., Lyszczarz, T.M., J. Vac. Sci. Technol. B14 2060 (1996).Google Scholar
12 Hirabayashi, K., Taniguchi, Y., Takamatsu, O., Ikeda, T., Ikoma, K. and Iwasaki-Kurihara, N.: Appl. Phys. Lett. 53, 1815 (1988).Google Scholar
13 Liu, H., Wang, C., Gao, C., Han, Y., Luo, J., Zou, G. and Wen, C.: J. Phys.: Condens. Matter, 14, 10973 (2002).Google Scholar
14 Williams, O. A., Douhéret, O., Daenen, M., Haenen, K., Osawa, E., Takahashi, M., Chem. Phys. Lett. 445, 255 (2007).Google Scholar
15 Kromka, A., Rezek, B., Remes, Z., Michalka, M., Ledinsky, M., Zemek, J., Potmesil, J., Vanecek, M., Chemical Vapor Deposition 14, 181 (2008).Google Scholar
16 Kriele, A., Williams, O.A., Wolfer, M., Brink, D., Muller-Sbert, W., Nebel, C. E., Appl. Phys. Let. 95, 031905 (2009).Google Scholar
17 Kromka, A., Babchenko, O., Rezek, B., Ledinsky, M., Hruska, K., Potmesil, J., Vanecek, M., Thin Solid Films 518, 343 (2009).Google Scholar
18 Kromka, A., Babchenko, O., Kozak, H., Hruska, K., Rezek, B., Ledinsky, M., Potmesil, J., Michalka, M., Vanecek, M.: Diam. Relat. Mater. 18, 734 (2009).Google Scholar
19 Kromka, A., Babchenko, O., Kozak, H., Rezek, B. and Vanecek, M., phys. stat. sol. b 246 2654 (2009).Google Scholar
20 Kozak, H. et al, accepted for publication in Sensor Letters (2009).Google Scholar
21 Ando, Y., Nishibayashi, Y., Kobashia, K., Hirao, T., Oura, K.: Diam. Relat. Mater. 11, 824 (2002).Google Scholar