Published online by Cambridge University Press: 01 February 2011
Microelectromechanical systems (MEMS) are being used in many critical applications that require very high stress levels. To properly design MEMS components, mechanical properties should be characterized testing relevant sized samples that are fabricated with the same procedures as the final structure. In this paper we use atomic force microscopy (AFM) experiments to study the fracture strength statistics of polycrystalline SiC and SiN nanobeams, and compare their mechanical performance with the performance of previously tested Si nanostructures. Using the same AFM method and similar sample shape and sizes, allows a direct comparison to be made, which will be useful in determining the best material for different mechanical applications and also to validate the theoretical limits.