Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:24:52.363Z Has data issue: false hasContentIssue false

Combining Sol-Gel Chemistry and Extrusion Process Toward Generating First Vanadium Oxide Macroscopic Fibers

Published online by Cambridge University Press:  01 February 2011

H. Serier
Affiliation:
serier@crpp-bordeaux.cnrs.fr
Florent Carn
Affiliation:
carn@crpp-bordeaux.cnrs.fr
Marie-France Achard
Affiliation:
achard@crpp-bordeaux.cnrs.fr
Nathalie Steunou
Affiliation:
steunou@ccr.jussieu.fr
Jacques Livage
Affiliation:
livage@ccr.jussieu.fr
R. Backov
Affiliation:
backov@crpp-bordeaux.cnrs.fr
Get access

Abstract

Upon extrusion process, first vanadium oxide macroscopic fibers have been obtained. They are associated to longitudinal Young modulus from 15 to 25 GPa and depict strong high scale textural anisotropy as observed through cross-polarized microscopy. TEM observations and SAXS experiments reveal that those macroscopic fibers are made of nanoscopic ribbons associated to preferential orientation parallel to the macroscopic fiber main axis, while XRD and NMR investigations reveal a microstructure close to the V2O5.1.8H2O xerogels. These fibers can detect down to 0.1 ppm of ethanol within 16 seconds at 40°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mann, S. Nature, 1988, 332, 119; D. D. Archibald, S. Mann, Nature, 1993, 364, 430Google Scholar
2 Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G. A., Nature, 1996, 379, 703; P. Feng, X. Bu, G. D. Stucky, D. J. Pine, J. Am. Chem.Soc., 2000, 5, 994Google Scholar
3 Imhof, A., Pine, D. J., Nature 1997, 389, 948; S. Schacht, Q. Huo, I. G. Voigt-Martin, G. D. Stucky, F. Schüth, Science 1996, 273, 768; F. Carn, A. Colin, M-F. Achard, E. Sellier, M. Birot, H. Deleuze, R. Backov, J. Mater. Chem. 2004, 14, 1370.Google Scholar
4 Fornasieri, G., Badaire, S., Backov, R., Mondain-Monval, O., Zakri, C., Poulin, P., Adv. Mater. 2004,16, 1094.Google Scholar
5 Carn, F., Colin, A., Achard, M.-F., Deleuze, H., Backov, R., Adv. Mater. 2004, 16, 140; F. Carn, A. Colin, M.-F. Achard, H. Deleuze, C. Sanchez, R. Backov, Adv. Mater. 2005, 17, 62; F. Carn, N. Steunou, J. Livage, A. Colin A, R. Backov, Chem. Mater. 2005, 17, 644.Google Scholar
6 Jung, J. H., Yoshiyuki, Y., Shinkai, S., Angew. Chem. Int. ed. 2000, 39, 1862.Google Scholar
7 Hall, S. R., Bolger, H., Mann, S., Chem. Commun., 2003, 2784.Google Scholar
8 Wang, D., Caruso, R. A., Caruso, F., Chem. Mater. 2001, 13, 364.Google Scholar
9 Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., bernier, P., Poulin, P., Science 2000, 290, 1331.Google Scholar
10 Livage, J., Chem. Mater. 1991, 3, 578.Google Scholar
11 Pelletier, O., Davidson, P., Bourgaux, C., Coulon, C., Regnault, S., Livage, J., Langmuir 2000, 16, 5295.Google Scholar
12 Vigolo, B., Zakri, C., Nallet, F., Livage, J., Coulon, C., Langmuir 2002, 18, 9121.Google Scholar
13 Massiot, D., Fayon, F., Capron, M., King, I., Calvé, S. L., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., Hoatson, G., Magn. Reson. Chem. 2002, 40, 70.Google Scholar
14 Yao, Y., Oka, T., N. Yamamoto J. Mater. Chem. 1992, 2, 331.Google Scholar
15 Durupthy, O., Steunou, N., Coradin, T., Maquet, J., Bonhomme, C., Livage, J., J. Mater. Chem. 2005, 15, 1090 Google Scholar
16 Fontenot, C. J., Wiench, J. W., Pruski, M. and Schrader, G. L., J. Phys. Chem. B, 2001, 105, 1049610504.Google Scholar
17 Micocci, G., Serra, A., Tepore, A., Capone, S., rella, R., Siciliano, P., J. Vac. Sci.Technol. A 1997, 15, 34.Google Scholar
18 Liu, J., Wang, X., Peng, Q., Li, Y., Adv. Mat. 2005, 17, 764.Google Scholar