Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:33:05.432Z Has data issue: false hasContentIssue false

Combined Main- and Side-Chain Azobenzene Polyesters: A Potential For Photoinduced Nonlinear Waveguides

Published online by Cambridge University Press:  10 February 2011

F. Sahlén
Affiliation:
Condensed Matter Physics and Chemistry Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark
T. Geisler
Affiliation:
Condensed Matter Physics and Chemistry Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark
S. Hvilsted
Affiliation:
Condensed Matter Physics and Chemistry Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark
N. C. R. Holme
Affiliation:
Optics and Fluid Dynamics Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark
P. S. Ramanujam
Affiliation:
Optics and Fluid Dynamics Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark
J. C. Petersen
Affiliation:
Danish Institute of Fundamental Metrology, DK-2800 Lyngby, Denmark
Get access

Abstract

New combined main- and side-chain azobenzene polyesters, which exhibit an intensity dependent refractive index, have been prepared in order to optically fabricate nonlinear waveguides. Novel sulfone azobenzenes, a diester, (4-[[5-(ethoxycarbonyl)pentyl]sulfonyl]-4'-[[5-(ethoxycarbonyl)pentyl]methylamino] azobenzene, and a diol, 4-[[(8-hydroxy-7-methylhydroxy)-octyl]sulfonyl]-4'-N, N-dimethylamino azobenzene, have been used to prepare new polyesters by transesterification in the molten state. The polyesters have been characterized by UV-visible spectroscopy, differential scanning calorimetry (DSC), size exclusion chromatography (SEC), third harmonic generation (THG) and optical anisotropy measurements. The molar masses of the polyesters were in the range of 5000-10000 g mol−1, which was sufficient in order to spin coat thin films. From THG measurements the polymers are shown to possess an offresonance electronic X(3) of the order 10−12 esu corresponding to a nonlinear refractive index of 2.3×10−14 cm2/W.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Barthelmy, A., Maneuf, S. and Froehly, C., Optics Commun. 55, 193 (1985).Google Scholar
2 Aitchison, J.S., Weiner, A.M., Silberberg, Y., Oliver, M.K., Jackel, J.L., Leaird, D.E., Vogel, E.M. and Smith, P.W., Opt. Lett. 15, 471 (1990).Google Scholar
3 Allan, G.R., Skinner, S.R., Andersen, D.R. and Smirl, A.L., Opt. Lett. 16, 156 (1991).Google Scholar
4 Luff, B.J., Harris, R.D., Wilkinson, J.S., Wilson, R. and Schiffrin, D.J., Opt. Lett. 21, 618 (1996).Google Scholar
5 Korolkova, N. and Perina, J., Optics Comnun. 136, 135 (1996).Google Scholar
6 Eich, M., Wendorff, J.H., Rech, B. and Ringsdorf, H., Macromol. Chem. Rapid Commun. 8, 59 (1987).Google Scholar
7 Hvilsted, S., Andruzzi, F., Kulinna, C., Siesler, H.W. and Ramanujam, P.S., Macromoleculesnau, 28, 2172 (1995).Google Scholar
8 Rochon, P., Batalla, E. and Natansohn, A., Appl. Phys. Lett. 66, 136 (1995).Google Scholar
9 Kim, D.Y., Tripathy, S.K., Li, L. and Kumar, J., Appl. Phys. Lett. 66, 1166 (1995).Google Scholar
10 Ramanujam, P.S., Holme, N.C.R. and Hvilsted, S., Appl. Phys. Lett. 68, 1329 (1996).Google Scholar
11 Rochon, P., Natansohn, A., Callender, C.L. and Robitaille, L., Appl. Phys. Lett. 71, 1008 (1997).Google Scholar
12 Lawrence, B.L., Cha, M., Kang, J.U., Torruellas, W., Stegeman, G., Baker, G., Meth, J. and Etemad, S., Electron. Lett. 30, 447 (1994).Google Scholar
13 Krol, D.M. and Thakur, M., Appl. Phys. Lett. 56, 1406 (1990).Google Scholar
14 Lawrence, B.L., Cha, M., Torruellas, W.E., Stegeman, G., Etemad, S., Baker, G. and Kajzar, F., Appl. Phys. Lett. 64, 2773 (1994).Google Scholar
15 Nalwa, H.S., in Nonlinear Optics of Organic Molecules and Polymers, edited by Nalwa, H.S. and Miyata, S. (CRC Press Inc, Boca Raton, 1997) p. 718.Google Scholar
16 Matsumoto, S., Kubodera, K-I., Kurihara, T. and Kaino, T., Appl. Phys. Lett. 51, 1 (1987).Google Scholar
17 Matsumoto, S., Kurihara, T., Kubodera, K. and Kaino, T., Mol. Cryst. Liq. Cryst. 182A, 115 (1990).Google Scholar
18 Torruellas, W.R., Zanoni, R., Marques, M.B., Stegeman, G.I., Mohlmann, G.R., Erdhuisen, E.W.P. and Horsthuis, W.H.G., Chem. Phys. Lett. 175, 267 (1990); J. Chem. Phys. 94, 6851 (1991).Google Scholar
19 Morichère, D., Dumont, M., Levy, Y., Gadret, G. and Kajzar, F., SPIE 1560, 214 (1991).Google Scholar
20 Geisler, T., Pedersen, K., Underhill, A.E., Dhindsa, A.S., Greve, D.R., Bjornholm, T. and Petersen, J.C., J. Phys. Chem. B 101, 10625 (1997).Google Scholar
21 Rangle-Rojo, R., Yamada, S. and Matsuda, H., Appl. Phys. Lett. 72, 1021 (1998).Google Scholar
22 Dong, F., Kousoumas, E., Couris, S. Shen, Y., Qiu, L. and Fu, X., J. App1. Phys. 81, 7073 (1997).Google Scholar
23 Cheng, L.-T., Tam, W., Stevenson, S.H., Meredith, G.R., Rikken, G. and Marder, S.R., J. Phys. Chem. 95, 10631 (1991).Google Scholar
24 Kajzar, F. and Zargoska, M., Nonlinear Opt. 6, 181 (1993).Google Scholar
25 Kim, D. Y., Lawrence, B. L., Torruellas, W. E., Stegeman, G. I., Baker, G. and Meth, J., Appl. Phys. Lett. 65, 1742 (1994).Google Scholar
26 Lee, H.-J., Kang, S.-J., Kim, H.K., Cho, H.-N., Park, J.T. and Choi, S.-K., Macromoleculesnau, 28, 4638 (1995).Google Scholar