Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:51:37.206Z Has data issue: false hasContentIssue false

Colossal Magnetoresistance in La-Ca-Mn-O

Published online by Cambridge University Press:  15 February 2011

S. Jin*
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

Very large increase in electrical conductivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistance (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 413(1994).Google Scholar
2. Jin, S., McCormack, M., Tiefel, T. H., and Ramesh, R., J. Appl. Phys. 76, 6929 (1994).Google Scholar
3. Raveau, B., Maignan, A., and Caignaert, V., J. Sol. State Chem. 117, 426 (1995).Google Scholar
4. Ju, H. L., Kwon, C., Li, Q., Green, L. and Venkatesan, T., Appl. Phys. Lett. 65, 2109 (1994).Google Scholar
5. Gong, G., Canedy, C., Xiao, G., Sun, J., Gupta, A., and Gallagher, W. J., Appl. Phys. Lett. 67, 1783 (1995).Google Scholar
6. Singh, S. K., Palmer, S. B., McK.Paul, D., and Lees, M. R., Appl. Phys. Lett. 69, 263 (1996).Google Scholar
7. Schiffer, P., Ramirez, A. P., Bao, W. and Cheong, S. W., Phys. Rev. Lett. 75, 3336 (1995).Google Scholar
8. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
9. Chahara, B., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
10. Jin, S., O'Bryan, H. M., Tiefel, T. H., McCormack, M., and Rhodes, W. W., Appl. Phys. Lett. 66, 382 (1995).Google Scholar
11. Hwang, H. Y., Cheong, S. W., Radaelli, P. G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914 (1995).Google Scholar
12. Sun, J. Z., Krusin-Elbaum, L., Parkin, S. S. P. and Xiao, G., Appl. Phys. Lett. 67, 2726 (1995).Google Scholar
13. Tomika, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., and Tokura, Y., Phys. Rev. Lett. 74, 5108(1995).Google Scholar
14. Jin, S., Tiefel, T. H., McCormack, M., O'Bryan, H. M., Chen, L. H., Ramesh, R., and Schurig, D., Appl. Phys. Lett. 67, 557 (1995).Google Scholar
15. Gupta, A., McGuire, T. R., Duncombe, P. R., Rupp, M., Sun, J. Z., Gallagher, W. J., and Xiao, G., Appl. Phys. Lett. 67, 3494 (1995).Google Scholar
16. Simond, J. L., Physics Today, April 1995, p. 26.Google Scholar
17. Prinz, G. A., Physics Today, April 1995, p. 58.Google Scholar
18. Sun, J. Z., Krusin-Elbaum, L., Duncome, P. R., Gupta, A. and Laibowitz, R. B., Appl. Phys. Lett, (in press).Google Scholar
19. Jonker, G. H. and van Santen, J. H., Physica 16, 337 (1950).Google Scholar
20. Wollan, E. O. and Koehler, W. C., Phys. Rev. 100, 545 (1955).Google Scholar
21. deGennes, P. G., Phys. Rev. 118, 141 (1960).Google Scholar
22. Goodenough, J. B., Phys. Rev. 100, 564 (1955).Google Scholar
23. Tofield, B. C. and Scott, W. R., J. Solid State Chem. 10, 183 (1974).Google Scholar
24. Searle, C. W. and Wang, S. T., Canadian J. Phys. 48, 2023 (1970).Google Scholar
25. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
26. Goodenough, J. B., in Progress in Solid Siate Chemistry, edited by Reiss, H. (Pergamon, New York, 1971), vol. 5, chap. 4, p. 325.Google Scholar
27. Kusters, R. M., Singleton, J., Keen, D. A., McGreevy, R., and Hayes, W., Physica B155, 362 (1989).Google Scholar
28. Leung, L. K., Morrish, A. H., and Searle, C. W., Can J. Physics 47, 2697 (1969).Google Scholar
29. Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
30. Dieny, B., Humbert, P., Speriosu, V. S., Metin, S., Gurney, B. A., Baumgart, P., and Lefakis, H., Phys. Rev. B45, 806 (1992).Google Scholar
31. Fullerton, E. E., Conover, M. J., Mattson, J. E., Sowers, C. H., and Bader, S. D., Appl. Phys. Lett. 63, 1699(1993).Google Scholar
32. Chen, L. H., Tiefel, T. H., Jin, S., van Dover, R. B., Gyorgy, E. M., and Fleming, R. M., Appl. Phys. Lett. 63, 1279(1993).Google Scholar
33. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, 3744 (1992).Google Scholar
34. Levy, P. M., Science 265, 972 (1992).Google Scholar
35. Hylton, T. L., Coffey, K. R., Parker, M. A., and Howard, J. K., Science 261, 1021 (1993).Google Scholar