Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:51:24.010Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Silicon Films Using Hexachlorodisilane

Published online by Cambridge University Press:  26 February 2011

R. C. Taylor
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
B. A. Scott
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
S.-T. Lin
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
F. LeGoues
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
J. C. Tsang
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The use of hexachlorodisilane (Si2Cl6) as an alternative to silane for growth of polycrystalline silicon films has been investigated. Films were grown at atmospheric pressure in both hydrogen and nitrogen carrier gases over a temperature range of 450–900°C. Deposition rate data indicate the existence of two growth regimes at high and low temperatures and in the presence or absence of hydrogen. The change from amorphous to polycrystalline growth takes place at 600–650°C. At 600°C deposited films are amorphous but crystallize during the growth process. The chlorine content of high-temperature films was found to be less than 0.01 at.%.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inorganic Synthesis, 1, 42 (1939).Google Scholar
2. Frieser, R.G., J. Electrochem. Soc. 115, 401 (1968)CrossRefGoogle Scholar
3. Mott, N.F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials, (Clarendon Press, Oxford, 1979).Google Scholar
4. Classen, W.A.P. and Bloem, J., J. Electrochem. Soc. 127, 194 (1980).Google Scholar
5. Duchemin, M.J., Bonnet, M.M. and Koelsch, M.I., J. Electrochem. Soc. 125, 637 (1978).CrossRefGoogle Scholar
6. Bloem, J. and Giling, L.J. in Current Topics in Materials Science, Vol. 1, edited by Kaldis, E. (North Holland Publishing Company, Amsterdam, 1978) pp. 147342.Google Scholar
7. Classen, W.A.P. and Bloem, J., J. Cryst. Growth, 50, 807 (1980).CrossRefGoogle Scholar
8. Bloem, J., Classen, W.A.P. and Valkenburg, W.G.J.N., J. Cryst. Growth, 57, 177 (1982).CrossRefGoogle Scholar
9. Doncaster, A.M. and Walsh, R., J.C.S. Faraday I, 76, 272 (1980).Google Scholar
10. Stassinos, E.C., Anderson, T.J. and Lee, H. H., J. Cryst. Growth, 73, 21 (1985).Google Scholar
11. Shafer, H.H. and Nickl, J., Z. Anorg. Allg. Chem. 274, 250 (1953).Google Scholar
12. Shafer, H., Jacob, H. and Etzel, K., Z. Anorg. Allg. Chem., 286, 27 (1956).Google Scholar
13. Bloem, J. and Beers, A.M., Thin Solid Films, 124, 93 (1985).CrossRefGoogle Scholar
14. Bisaro, R., Proust, N., Magarino, J. and Zellama, K., Thin Solid Films., 124, 171 (1985).CrossRefGoogle Scholar
15. Kamins, T.I. and Cass, T.R., Thin Solid Films, 16, 147 (1973).Google Scholar
16. Kamins, T.I., J. Electrochem. Soc. 127, 686 (1980).Google Scholar
17. Nagasima, N. and Kubota, N., Jap. J. Appl. Phys., 14, 1105 (1975).Google Scholar