Published online by Cambridge University Press: 17 March 2011
We have studied chemical stability of thermally-carbonized porous silicon (PS). The initial hydrogen termination of PS has been replaced by carbon using thermal dissociation of acetelyne molecules. This kind of carbonized surface has been found to be at least as stable in humid atmosphere as a thermally-oxidized PS surface. It is also found to be stable in an aqueous KOH and HF. In-vitro studies of tissue compatible in simulated human fluid indicate improved stability and that the carbonized surface could be bioactive.