Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T23:30:58.976Z Has data issue: false hasContentIssue false

Chemical Kinetics Models for the Fatigue Behavior of Fused Silica Optical Fiber

Published online by Cambridge University Press:  10 February 2011

M. J. Matthewson*
Affiliation:
Department of Ceramic and Materials Engineering, Rutgers University, Piscataway, NJ 08854, mjhnm@fracture.rutgers.edu.
Get access

Abstract

There have been numerous studies of the fatigue and strength behavior of fused silica optical fibers. However, no coherent model has emerged that self-consistently describes the simultaneous effects of stress, temperature and activity of the corroding species (e.g. water). A power law degradation kinetics model (relating the crack growth rate to the applied stress intensity factor, KI) is widely used although various exponential forms based on chemical rate theory have also been proposed. The dependence of fatigue on parameters such as humidity, pH and temperature, has usually been treated in an empirical manner. Sometimes it is even ignored -for example, the service environment is often assumed to be the same as the proof test environment when making lifetime predictions, thus avoiding the need for understanding the humidity dependence; this assumption is often unjustified. This paper reviews the dependence of fatigue on environmental factors and highlights some of the inconsistencies in published data. It is then attempted to present a coherent kinetics model that simultaneously accounts for stress temperature, humidity, etc. Several possible forms of the model are compared to a range of experimental data of several different types. The comparison is made using fitting techniques that account for correlation between fit parameters. It is found that a simple exponential form of the degradation kinetics model gives the best overall description of the temperature, humidity and pH effects on static and dynamic fatigue. It should be noted that the exponential form predicts shorter lifetimes than the ubiquitous power law model. Therefore, under some circumstances, the predictions of “worst case” models based on power law kinetics are unduly optimistic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wiederhorn, S. M., J. Am. Ceram. Soc. 55 (2) 8185 (1972).10.1111/j.1151-2916.1972.tb11215.xGoogle Scholar
2. Lawn, B. R., J. Mat. Sci. 10 469480 (1975).10.1007/BF00543692Google Scholar
3. Tomozawa, M., Annu. Rev. Mater. Sci. 26 4374 (1996).10.1146/annurev.ms.26.080196.000355Google Scholar
4. Jakus, K., Ritter, J. E. Jr. and Sullivan, J. M., J. Am. Ceram. Soc. 64 (6) 372374 (1981).10.1111/j.1151-2916.1981.tb10305.xGoogle Scholar
5. Bubel, G. M. and Matthewson, M. J., Opt. Eng. 30 (6) 737745 (1991).10.1117/12.55873Google Scholar
6. Griffloen, W., Opt. Eng. 33 488497 (1994).10.1117/12.152242Google Scholar
7. Rep. # TIA/EIA-445–76 (TIA, Washington, DC, 1993)Google Scholar
8. Duncan, W. J., France, P. W. and Craig, S. P., in Strength of inorganic glass edited by Kurkjian, C. R. (Plenum Press, New York, 1985) pp. 309328.Google Scholar
9. Yuce, H. H., Varachi, J. P. Jr., Kilmer, J. P., Kurkjian, C. R. and Matthewson, M. J., OFC'92 Tech. Digest postdeadline paper-PD21 (1992).Google Scholar
10. Taylor, A. T. and Matthewson, M. J., Proc. 47th Int. Wire & Cable Symp. (in press).Google Scholar
11. Armstrong, J. L., Matthewson, M. J., Kurkjian, C. R. and Chou, C. Y., Proc.46th Int.Wire & Cable Symp. (IWCS, Inc. Eatontown, NJ, 1997) pp. 902909.Google Scholar
12. Armstrong, J. L., Matthewson, M. J. and Kurkjian, C. R. (in this volume).Google Scholar
13. Kurkjian, C. R., Armstrong, J. L., Matthewson, M. J. and Plitz, I. M., Proc. Nat. Fiber Optic Engineers Conf. 2 133138 (1996).Google Scholar
14. Chou, C. Y., Armstrong, J. L. and Matthewson, M. J., abstract in Am. Ceram. Soc. Bull. 77 (4) 234 (1998).Google Scholar
15. Laidler, K. J., Chemical kinetics, 3rd ed. (Harper & Row, New York, NY, 1987).Google Scholar
16. Scanlan, I. (unpublished work).Google Scholar
17. Wiederhorn, S. M. and Bolz, L. H., J. Am. Ceram. Soc. 53 (10) 543549 (1970).10.1111/j.1151-2916.1970.tb15962.xGoogle Scholar
18. Helfinstine, J. D. and Gulati, S. T., abstract in Ceram. Bull. 71 470 (1992).Google Scholar
19. Gulati, S.T., Mat. Res. Soc. Proc. 144 6785 (1992).Google Scholar
20. Muraoka, M. and Abd, H., J. Am. Ceram. Soc. 79 (1) 5157 (1996).10.1111/j.1151-2916.1996.tb07879.xGoogle Scholar
21. Glaesemann, G. S., Proc. Soc. Photo-Opt. Instrum. Eng. 2611 3844 (1996).Google Scholar
22. Svensson, T. and Hjorth, A., Proc. 45th Int. Wire & Cable Symp. 490–494 (1996).Google Scholar
23. Cuellar, E., Kennedy, M. T. and Roberts, D. R., Proc. Soc. Photo-Opt. Instrum. Eng. 1791 717 (1992).Google Scholar
24. Matthewson, M. J. (unpublished work).Google Scholar
25. Shiue, Y. S. and Matthewson, M. J. (this volume).Google Scholar
26. Shiue, Y. S., PhD thesis, Rutgers University, 1998.Google Scholar
27. Scanlan, I. F., abstract in Ceram. Bull. 68 741 (1989).Google Scholar
28. Scanlan, I., in Physics of Fiber Optics (Advances in Ceramics V 2) edited by Bendow, R. and Mitra, S. S. (Am. Ceram. Soc. Columbus, OH, 1981) pp. 166175.Google Scholar
29. Kurkjian, C. R., Krause, J. T. and Paek, U. C., J. de Phys. 43 (12) C9–585586 (1982).Google Scholar
30. Matthewson, M. J. and Kurkjian, C. R., J. Am. Ceram. Soc. 70 (9) 662668 (1987).10.1111/j.1151-2916.1987.tb05736.xGoogle Scholar
31. Kurkjian, C. R., Matthewson, M. J. and Chaudhri, M. M. (in this volume).Google Scholar