Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T21:56:20.970Z Has data issue: false hasContentIssue false

Charge Transport through Methylated DNA Strand

Published online by Cambridge University Press:  17 June 2014

Jianqing Qi
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
M. P. Anantram
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
Get access

Abstract

Charge transport through an eight-base pair methylated DNA strand and its native counterpart have been investigated. We focus on three factors, contact coupling, decoherence and temperature, which can contribute to DNA charge transport. Our results show that with the same choice of contact coupling, in the phase-coherent limit the transmission of the methylated strand is smaller in the bandgap at energies close to the highest occupied molecular orbital (HOMO), while inside the HOMO band, the transmission is oscillatory and the methylated DNA may have a larger transmission in certain energy windows. The trend in transmission also holds in the presence of the decoherence though there is a crossover in the transmission of the native and methylated strands away from the HOMO level. We also find that the transport depends on the strength of contact coupling and the measurement temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Robertson, K. D., Oncogene 20, 3139, (2001).CrossRefGoogle Scholar
Vining, K. J., Pomraning, K. R., Wilhelm, L. J., Priest, H. D., Pellegrini, M., Mockler, T. C., Freitag, M. and Strauss, S. H., BMC Genomics 13, 27, (2012).CrossRefGoogle Scholar
Hore, T. A., Rapkins, R. W. and M Graves, J. A., Trends Genet. 23, 440, (2007).CrossRefGoogle Scholar
Das, P. M. and Singal, R., J. Clin. Oncol. 22, 4632, (2004).CrossRefGoogle Scholar
Bock, C., Tomazou, E. M., Brinkman, A. B., Muller, F., Simmer, F., Gu, H., Jager, N., Gnirke, A., Stunnenberg, H. G. and Meissner, A., Nat. Biotechnol, 28, 1106, (2010).CrossRefGoogle Scholar
Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M. and Kawai, T., J. Am. Chem. Soc. 133, 9124, (2011).CrossRefGoogle Scholar
Hihath, J., Guo, S., Zhang, P. and Tao, N., J. Phys.: Condens. Matter 24, 164204, (2012).Google Scholar
Boal, A. K., Barton, J. K., Bioconj. Chem. 16, 312 (2005).CrossRefGoogle Scholar
Muren, N. B. and Barton, J. K. J. Am. Chem. Soc. 135, 16632 (2013).CrossRefGoogle Scholar
Macke, T. and Case, D., in Molecular Modeling of Nucleic Acids, edited by Leontes, N. B. and SantaLucia, J. Jr. (American Chemical Society: Washington, DC, 1998), pp. 379.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. ., Gaussian 09. Gaussian, Inc.: Wallingford, CT, (2009).Google Scholar
Lowdin, P., J. Chem. Phys. 18, 365, (1950).CrossRefGoogle Scholar
Buttike, M., Phys. Rev. Lett. 57, 1761, (1986).CrossRefGoogle Scholar
Qi, J., Edirisinghe, N., Rabbani, M. G. and Anantram, M. P., Phys. Rev. B 87, 085404, (2013).CrossRefGoogle Scholar