Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T15:59:33.057Z Has data issue: false hasContentIssue false

Characterization of Pd Impurities and Finite-Sized Defects in Detector Grade CdZnTe

Published online by Cambridge University Press:  13 July 2011

M.C. Duff
Affiliation:
Savannah River National Laboratory, Aiken, SC 29808, U.S.A.
J.P. Bradley
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
Z.R. Dai
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
N. Teslich
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
A. Burger
Affiliation:
Fisk University, Nashville, TN 37208, U.S.A.
M. Groza
Affiliation:
Fisk University, Nashville, TN 37208, U.S.A.
V. Buliga
Affiliation:
Fisk University, Nashville, TN 37208, U.S.A.
Get access

Abstract

Synthetic CdZnTe or “CZT” crystals are highly suitable for γ-spectrometers operating at the room temperature. Secondary phases (SP) in CZT are known to inhibit detector performance, particularly when they are present in large numbers or dimensions. These SP may exist as voids or composites of non-cubic phase metallic Te layers with bodies of polycrystalline and amorphous CZT material and voids. Defects associated with crystal twining may also influence detector performance in CZT. Using transmission electron microscopy, we identify two types of defects that are on the nano scale. The first defect consists of 40 nm diameter metallic Pd/Te bodies on the grain boundaries of Te-rich composites. Although the nano-Pd/Te bodies around these composites may be unique to the growth source of this CZT material, noble metal impurities like these may contribute to SP formation in CZT. The second defect type consists of atom-scale grain boundary dislocations. Specifically, these involve inclined “finite-sized” planar defects or interfaces between layers of atoms that are associated with twins. Finite-sized twins may be responsible for the subtle but observable striations that can be seen with optical birefringence imaging and synchrotron X-ray topographic imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heffelfinger, J. R., Medlin, D. L., and James, R. B.. MRS Symp.Ser. 487, 4954 (1998).Google Scholar
2. Schieber, M., Schlesinger, T. E., James, R. B., Hermon, H., Yoon, H., and Goorsky, M.. J. Cryst. Growth 237239, 2082 (2002).Google Scholar
3. Szeles, C. and Driver, M. C.. SPIE Proc. 3446, 1 (1998).Google Scholar
4. Shen, J., Aidun, D. K., Regel, L., and Wilcox, W. R.. Cryst. Growth 132, 250260 (1993).Google Scholar
5. Wang, T., Jie, W., and Zeng, D.. Mater. Sci. Engin. A 472, 227230 (2008).Google Scholar
6. Rai, S., Mahajan, S., McDevitt, S., and Johnson, C. J.. J. Vac. Sci. Tech. B9, 1892 (1996).Google Scholar
7. Zeng, D., Jie, W., Wang, T., and Zhou, H.. J. Crystal Growth 311, 44144417 (2009).Google Scholar
8. Henager, C., Edwards, D. J., Schemer-Kohrn, A. L., Bliss, M., and Jaffe, J. E.. J. Crystal Growth 312, 507513 (2010).Google Scholar
9. Duff, M. C., Hunter, D. B., Burger, A., Groza, M., Buliga, V., Bradley, J. P., Graham, G., Dai, Z. R., Teslich, N., Black, D. R., and Lanzirotti, A.. J. Mater. Res. 24, 13611367 (2009).Google Scholar
10. Duff, M. C., Lynn, K. G., Jones, K., Dai, Z. R., Bradley, J. P., and Teslich, N.. SPIE Proc. 7449 74490N (2009) (oral and written publications).Google Scholar
11. Li, L., Lu, F., Lee, C., Wright, G., Rhiger, D. R., Sen, S., Shah, K. S., Squillante, M. R., Cirinano, L., James, R. B., Burger, A., Luke, P., and Olson, R.. SPIE Proc. 4784, 76 (2003).Google Scholar
12. Duff, M. C., Hunter, D. B., Nuessle, P., Black, D. R., Burdette, H., Woicik, J., Burger, A., and Groza, M.. J. Elect. Mater. 36, 10921097 (2007).Google Scholar
13. Awadalla, S. A., Mackenzie, J., Chen, H., Redden, B., Bindley, G., Duff, M. C., Burger, A., Groza, M., Buliga, V., Bradley, J. P., Dai, Z. R., Teslich, N., and Black, D. R.. J. Crystal Growth 312, 507513 (2010).Google Scholar
14. Duff, M. C., Hunter, D. B., Burger, A., Groza, M., Buliga, V., and Black, D. R.. Appl. Surf. Sci. 254, 28892892 (2008).Google Scholar
15. Harada, M., Asakura, K., Ueki, Y., and Toshima, N.. J. Phys. Chem. 96, 97309738. (1992).Google Scholar
16. Okamoto, H.. J. Phase Equilibria 13, 7379 (1992).Google Scholar
17. Duff, M. C., Lynn, K. G., Jones, K., Soundararajan, R., Bradley, J. P., Ishii, H., Aguiar, J., and Wozniakiewicz, P.. SPIE Proc. 7805, 74490N (2010).Google Scholar
18. Marquis, E. A., Hamilton, J. C., Medlin, D. L., and Leonard, F.. Phys. Rev. Lett. 93, 14 (2004).Google Scholar
19. Marquis, E. A., Medlin, D. L., and Leonard, F.. Acta Materialia 55, 59175923 (2007).Google Scholar